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Abstract

This paper introduces Trend-Cycle Bayesian VARs (TC-BVARs) for use in macro-
economic forecasting and policy analysis. Economic theory supports the view that trends
and cycles are dominated by different shocks and transmission channels. Each variable is
decomposed into components, yt = ȳt+ ŷt. The flexibility of TC-BVARs comes from the
fact that the model specifies flexible processes for low-frequency movements (trends) of
variables and flexible VAR process for the cyclical frequencies. There is a clear distinc-
tion of cycles, trends, or exogenous time-varying policy targets. TC-BVARs benefit from
the flexibility of VARs and from careful anchoring of the models’ long-run behavior. The
state-space form of the model helps to work with missing data, mixed frequencies, and
various forms of expert judgment and conditional forecasting. Structural TC-BVARs ben-
efit from less biased reduced-form model specification.

Keywords: VAR, trend, cycle, forecast, system priors, penalized maximum likelihood,
sequential Monte Carlo
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I. INTRODUCTION

Vector Auto-Regressive (VAR) models are often used for short-term or medium-term fore-
casting. In this paper we introduce Trend-Cycle Bayesian Vector Auto-Regressive (TC-BVAR)
models and make a case for their use in forecasting instead of the VARs. The idea behind
TC-BVARs is that the behavior of macroeconomic variables at different frequencies (trends,
cyclices) may be dominated by different economic phenomena and modeling them as such is
beneficial. Each variable is decomposed into parts, yt = ȳt+ ŷt. A natural example would be
to think of the dynamics of the potential output and the ‘output gap’ and their different impact
on inflation and interest rates. Specifying a flexible TC-BVAR model introduces some estima-
tion challenges due its flexibility. To cope with these challenges we illustrate how Bayesian
‘system priors’, priors about the overall model properties, can help with the implementation
of the model.

The benefits of separating clearly the low-frequency and cyclical dynamics of the data is at
least threefold. First, acknowledging different dynamics may significantly de-bias the esti-
mated model and lead to meaningful estimates of underlying transmission channels, as illus-
trated in Andrle and Bruha (2014). As an example, think of a desinflating economy, where
low-frequency continued decline of both inflation (target) and interest rates will dominate the
standard VAR model and lead to price puzzles, and others. Second, the trend-cycle specifica-
tion is very flexible with respect to data transformations, i.e. estimation in levels or in growth-
rates. Often, stationarity-inducing transformations lead to implausible constraints, as is the
case when transitory shock to policy rate leads to transitory response of output growth, with
a permanent change in the level of output. Third, from a purely pragmatic forecasters’ point
of view, the stationary cyclical dynamics will die out and the medium-term forecast is dom-
inated by the trends ( potential output growth, inflation target, or change in the world trade
openness) that are good candidates for expert judgment or satellite models, often differ from
the historical episodes, and it is too demanding to ask for these to be captured in a one-shock-
per-variable VARs.

Economic theory supports the notion that different structural shocks and transmission mech-
anisms may be dominant at different frequencies of economic time series. Different factors
dominate long-run economic growth and economic business cycles. Of course, factors behind
long-term growth can and do spill over into cyclical frequencies to some extent, see Aguiar
and Gopinath (2007), for instance, and such spillovers should be reflected in structural mod-
els. There is a strong tradition of business cycle analysis both in theoretical and empirical
economics.
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In the econometric literature, the recognition of frequency-specific modeling dates back to
Jevons or more recently at least to band-spectrum regression by Engle (1974) and the work
by Grether and Nerlove (1970).1 Further, coherence analysis of macroeconomic time series,
however, further supports the view that a distinction between trends and cycles can be a good
approximation for flexible time-series models. Forni and others (2005), Stock and Watson
(2002), or Andrle, Bruha, and Solmaz (2016) illustrate that macro data features high coher-
ence at cyclical frequencies, and much lower coherence at low frequencies and very high fre-
quencies. Economic cycles can be described with just a small number of common factors,
often rather stable in time, even through Great Recession, see Stock and Watson (2012).

Evolution of ‘trends’ can be highly complex and high-frequencies can be affected by data
measurement errors, leaving the cyclical dynamics as primary candidates for VAR analysis.
Yes, the distinction of low and cyclical frequencies is sometimes an admission of imper-
fection of our models and admission about a higher degree of uncertainty about the low-
frequency component of the model. This aspect of theory and data has not been reflected in
the VAR literature to our knowledge, though it is sometimes the case with structural dynamic
stochastic general equilibrium (DSGE). This is a bit paradoxical, as the structural DSGE
models possibly can and should strive to address the issue, while it may bee too much to ask
from a [S]VAR.

In this paper, the examples provided mostly deal with a simple ‘monetary policy’ VARs.
Simple time-series model of output, inflation, interest rates and its open-economy extension.
Hence, the concept discussed here are ‘trend’ level of output and output gaps, inflation devi-
ation from the inflation target or long-term inflation expectations, or trend real rate of inter-
est. Most concepts, perhaps with the exception of the inflation target and long-term inflation
expectations are unobserved and require the TC-BVAR specification or an explicit ad-hoc
pre-filtering.

But TC-VARs are not tied to these type of ‘monetary policy’ models. For instance, models
of foreign trade and its impact on the economy, not acknowledging the changes time-varying
nature of the trade openness of the economy, driven by evolution of supply-chain manage-
ment, international trade agreements or trade unions expansions, can significantly affect the
cyclical implications of the model. In the same vein, in most labor markets over the World a

1“In itself, the division of a time series into several unobserved components is of little significance; it
is, rather, that the components are themselves ascribable to separate and distinct groups of causes or influ-
ences.”(Grether and Nerlove, 1970, pp. 686) “It may be too much to ask of a model that it explain both slow
and rapid shifts in the variables, or both seasonal and non-seasonal behavior. It is at least reasonable to test the
hypothesis that the same model applies at various frequencies.”(Engle, 1974, pp. 5)
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version of ‘Okun’s Law’ can be found, while the trend labor force participation, equilibrium
unemployment, or secular changes in the level of real wages differs starkly.

Trends and Cycles

More specifically, the TC-BVAR models decompose variables of interest into three, often
unobserved, components capturing the trends, cycles, and high-frequency dynamics and
model them separately:

yt = ȳt+ ŷt+ ẏt. (1)

The low-frequency component, Ȳt, can be modeled using a parsimonious version of a well-
known local-level model, see or . The unobserved cyclical component ŷt, is specified as a
zero-mean VAR model with k lags. The high-frequency component ẏt can be omitted or used
when the data is particularly noisy at high frequencies, possible due to measurement issues.2

A white-noise process or a MA(1) process are natural candidates in this case, as discussed
below.

Clearly, resulting model is essentially a VARIMA model and the use of prior is crucial for
sensible estimates. Formally, the TC-BVAR models take a state-space form, as do linearized
structural DSGE models, and so the tools from the technical toolbox available for these mod-
els are easy to apply. Specifically, dealing with missing observations, mixed frequencies (quar-
terly, annual), conditional and unconditional forecasting, and forecasting with expert judg-
ment are available.

To illustrate the importance of the decomposition into components, while avoding frequency-
domain formalism, we decomposed U.S. median inflation (in percent, annualized) into the
three components. The trend component is frequencies lower than 32 periods, the cyclical
frequency is up to 2 periods, and the high-frequency is the residual of band-pass filter. Jointly
with the filtered trend inflation we show an inflation-trend measure from the FRB/US obtained
from splicing model estimates until late 1970’s and Survey of Professional Forecasters ten-
years-ahead survey. While the two series differ, they share the same principle. The cyclical
component of the output is plotted jointly with cyclical component of inflation. For the most
part, only inflation deviation from the long-term expectation should respond to cyclical state
of the economy. As one would expect, it is the cyclical component of output that co-moves
with deviation of inflation from its long-term expectations, a version of a short-run Phillips
curve relationship.

2In the spirit of structural time-series models, Harvey (1989), adding seasonal component to the model can
be a natural extension of the model, avoiding series-by-series ad-hoc seasonal adjustment.
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Figure 1. Frequency Decomposition of U.S. Median Inflation
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As an example, in a closed-economy model with output, inflation, and interest rates there
are only three stochastic shocks that are asked to explain all the dynamics in a regular VAR.
Researchers then face issues of variable transformations, level or growth rates, issues with
arbitrarilly estimated or non-existent steady state, etc. With a TC-BVAR for the same econ-
omy, a local level trend model is specified for the potential output, inflation target is either
observed or inferred from ten-year ahead inflation expectations and trend in real interest rate
accommodated, with the flexible VAR modeling the deviation of output from the potential,
inflation from the inflation target, and the cyclical frequency of interest rate.

Structual VARs
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All the principles and techniques in this paper carry over to estimation and use of Struc-
tural VARs, that is, to Structural TC-BVARs. Structural VARs can be easily estimated in a
trend-cycle setup and would often benefit from lower misspecification of the reduced form by
innaccurate representation of trends or steady-state values of variables. With structural VARs,
the structural shocks can be viewed as function of one-step-ahead forecast errors, and usually
the covariance matrix of residuals is used for shock identification. Hence, having the reduced-
form VAR severely misspecified will dramatically affect any structural inference using the
model, as argued in Andrle and Bruha (2014).

Structural VARs, would also benefit from the use of System Priors. In the forecasting appli-
cations, the system priors introduced below are primarly aimed at assuring stationarity of the
cyclical components, restricting the persistence of the model and oscillatory dynamics, etc.
With Structural VARs, the system priors should be based on economic theory, be it about
impulse-response functions, variance decomposition, or shock decompositions. All these are
function of parameters and the system priors would translate into model estimates.

Estimation with System Priors

Estimation of TC-BVAR is a little bit more involved than estimation of a regular VAR models
or BVAR models. The reason is the presence of the unobserved variables and no closed-form
solution for the likelihood estimate. Formally, TC-BVAR estimation it is ‘just’ a Bayesian
estimation of a state-space model, not really different from estimation of linearized DSGE
models. For meaningful estimation of such a flexible model with a great deal of parameters
the importance of both shrinkage and economically-meaningful priors is crucial. For this pur-
pose, common priors for VAR models are complemented with ‘system priors’ about the over-
all behavior of the model (IRFs, frequency-response functions, etc.), making the estimation
process simpler.

The part of the paper focused on estimation of the TC-BVARs explains the incorporation of
System Priors, but more details are to be found in Andrle and Beneš (2013) or and Andrle and
Plašil (2016). The estimate of the posterior mode, with or without the use of homotopy meth-
ods, can be a part of Markov Chain Monte-Carlo (MCMC) methods as with DSGE models,
often relying on Metropolis-Hastings algorithm. However, the recently introduced Sequential
Monte Carlo (SMC) approach of Herbst and Schorfheide (2014) and Herbst and Bognanni
(2015) is a particularly suitable approach when the system priors are used. The link between
using the homotopy and using tampered distributions in each of the method explores the idea
of building the estimate off the prior information.
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Toolbox For practitioners, the code to create, estimate, and forecast with the models is avail-
able for Matlab. The code is designed for ease of use rather than speed, under the premise that
the estimation step will be done a few times, while the forecasting and policy analysis will be
a daily activity.3 Most of the technical details of the state-space representation or the Bayesian
estimation with System priors is relegated to the appendix.

Relationship to the Literature

This paper extends our work on trend-cycle VARs we initiated in Bruha, Pierluigi, and Ser-
afini (2011), creating a TC-VAR for the euro-area labor market, and Andrle, Ho, and Garcia-
Saltos (2013), constructing a forecasting trend-cycle VAR model for Poland. Andrle and
Bruha (2014) make a list of issues with specification of the reduced-form VARs and how
it may distort both the forecasting performance and structural shock identification with the
VARs. One of the issues explained is the need to acknowledge trends, cycles, steady states,
and policy regimes. In this paper, we go a step further, illustrating the model that in our view
solves many issues raised and we put our money where our mouth is. Also, we employ Sys-
tem Priors to greatly facilitate the estimation of the flexible model with sensible properties.

One of the first papers in the VAR literature pointing out the need for some medium-term or
long-run anchor is Villani (2009) who constructs a VAR with a prior about a constant steady
state in a mean-adjusted VAR. The steady-state is determined by past data. The issue is the
fact that a constant steady-state assumption may not be feasible for many economies, where
the low-frequency components, trends, do vary in time. Sometimes, the time-varying trends
are even observed and it is enough just to subtract those from the raw data, as is the case with
the inflation targets, for instance. The most related work in is the approach the semi-structural
state-space approach of Benes and N’Diaye (2004), essentially a restricted TC-VAR, semi-
structural forward-looking models by Carabenciov and others (2008a) where New-Keynesian
model is used to specify the cyclical dynamics and economic theory is guiding trend spec-
ification. Canova (2014) proposes to link a flexible local-level model with structural DSGE
models to link the models to raw data if the permanent shocks are not part of the structural
model. The whole literature stands on the shoulders of structural time-series models by Har-
vey (1989).

Trend-Cycle BVARs are no panacea. If a structural model is available, its use is strongly
preferable. But when a VAR is to be estimated, TC-VARs do offer a better-behaved alterna-
tive to forecasting and policy analysis due to their well-anchored medium-run dynamics and

3The code and examples can be downloaded at: michalandrle.weebly.com/xx
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possibly less biased cyclical dynamics. TC-BVARs are still just a reduced-form time series
methods that can under no circumstances replace the need for structural models for economic
analysis. Further, TC-BVARs need enough macroeconomic data of reasonable quality to be
estimated, though both shrinkage- and system priors alleviate this burden to some extent.

II. BUILDING A TREND-CYCLE VAR

To build a simple trend-cycle VAR we will create a simple closed-economy model for anal-
ysis of real output, yt, inflation, �t, and nominal short-term interest rate, it. In the empirical
part of the paper, we will estimate a version of the model using for the United States and dis-
cuss the setup of marginal-independent and system priors.

A. A Prototype Closed-Economy TC-VAR

1. Aggregation

In the closed-economy TC-VAR we will specify a simple model for output, inflation, and
interest rates. Other variables, like unemployment, are easily added. All variables will be split
into three components: trend, cycle, and high-frequency. Trend variables will be denoted by
overbar, the cyclical variables with a ’hat’:

yt = ȳt+ ŷt+uy (2)

�t = �̄t+ �̂t+upi (3)

it = max[ît+ īt, ifloor,t]+ui. (4)

Note, that the units of variables and variables’ transformations matter a lot and the TC-VAR
framework is very flexible in this respect. For instance, the cyclical dynamics here is specified
in terms of level of output at cyclical frequency with the level of interest rate at cyclical fre-
quency.4 In a regular VAR, using log-level of GDP and level of interest rates would leave to
misspecification. In the same vein, using the growth rates of output and level of interest rates
has sever consequences as well.

4We do not purse the labels of the ‘output gap’ or deviation from ‘equilibrium’ interest rates, etc. but in
principle that is how part of the literature thinks of these components.
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The reason is, in our simple example, that the economic theory suggests that it should be the
cyclical position of the economy, the business cycle, that is linked via Phillips curve relation-
ship with inflation and interest rates, see Fig. 1. Apart from econometric issues, with growth
rates (first-difference filter) amplifying high-frequency volatility, the very unfortunate impli-
cation of a model with output growth rate is be that a transitory shock to interest rate will
result in transitory response of the GDP growth, that is, into a permanent change in the level
of output. That is quite a strong a priori restriction on the model and at odds with the theory.
Yet, often the result of standard VARs specified in growth rates to render the output station-
ary.5

2. Cycles

The business-cycle dynamics is driven by a zero-mean VAR(k) model for all endogenous
variables: output, inflation, and interest rate:
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⎢
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ŷt
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. (5)

The coefficient matrices, A1,… ,Ak are the auto-regressive coefficient driving the dynamics
of the VAR. Since the model is for cyclical components, they are restricted to be stationary,
restricting the eigenvalues of the model. Also, zero intercept translates into zero mean of the
cyclical components for any specification of the VAR dynamical coefficients. Medium and
long-term forecast is purely driven by the trend specification. In the case of forecasting VARs,
when identification of structural shocks need not to be considered, the matrix A0 will be a
unit matrix. Assuming that et ∼N(0,I), the loading matrix C estimates the covariance matrix
of shocks, or residuals.

3. Trends

The low-frequency, or trend, specification closes the model. The logarithm of potential out-
put, ȳt, is assumed to follow a local-level model, with the level of output being subject to per-

5Similar point can be made about fiscal VARS where transitory changes in tax rates may lead to permanent
changes in the level of output.



12

manent level shocks, uȳ,t, and growth rate shocks, ug,t:

ȳt = ȳt−1+gt∕4+uȳ,t (6)

gt = �ggt−1+(1−�g)gss+ug,t. (7)

This specification allows the potential output growth rate to be pinned down by the parame-
ter gss, for �g < 1, or become a unit-root process otherwise. It is interesting to note that the
process for a well-known Hodrick-Prescott filter is nested in our specification, with the output
gap, ŷt, being a white noise, �g = 1, and variance of uȳ,t being zero. The HP’s �ℎp parameter
is then a relative of the variance of eŷ,t and ug,t. Understanding the local-level model is impor-
tant for devising sensible priors for the estimation stage and forecasting overall.

Low frequency of inflation, its ‘trend’, is assumed to be constant or deterministic path consis-
tent with long-term inflation expectations or inflation target:

�̄t = �̄t−1+u�̄,t and E[�t+j|t] = �̄t for j →∞ (8)

Clearly, in economies with an explicit inflation target, the choice is easy and allows to accom-
modate time-varying inflation targets for economies undergoing disinflation (e.g. Poland or
the Czech Republic). Given the stationary cyclical component, �̂t, the long-run forecast of
inflation is the trend, or inflation target. In economies without a formal inflation target within
the sample, further information about �̄t beyond intrinsic realtionship of cyclical components
can be long-term inflation expectations surveys6 or long-term interest rates, if interest rates
are part of the model. Any relevant measures for n-steap ahead inflation forecast are easy to
use with the model, defining a new variable of expected n-period-ahead inflation, given the
recursive nature of the model.

The trend level of nominal interest rate is determined as a trend level of real interest rate plus
the inflation trend (target):

īt = r̄t+ �̄t (9)

r̄t = �r̄r̄t−1+(1−�r̄)r̄ss+ur̄. (10)

The real trend of interest rate is assumed to follow a persistent AR(1) model with a steady-
state equilibrium determined by assumptions on the long-run neutral rate of interest. For
�r̄ = 1 a unit-root behavior will accommodate significant trends in the real interest rates,
which is useful for forecasting with expert judgment on features of the economy that cannot

6Survey of Professional forecasters in the U.S. provides a ten-year ahead forecast. Also, the FRB/US vari-
able PTR is a constructed historical measure of inflation expectations.
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be modeled under such a simple specification. More sophisticated specifications are possible,
for instance, linking the long-term real growth rate or potential output growth to real trend
interest rate, and observing long-term interest rates, iNt , implied by the model, possibly also
incorporating a term-premium process to the model.

Linking expectation variables to the model is easy, given the recursive nature of the model.
Given the transition law of motion of the model as Xt = TXt−1 +Ret, expectation variables
are linear combination of state variables and expected state variables Xt+i|t = TiXt.7

4. High-Frequency Dynamics

The third component of the modeled macroeconomic variables are high-frequency dynam-
ics. The third component can often times be ignored. For variables with significant high-
frequency variation that is hard to explain with the model, especially on monthly or daily
frequency, it may help to improve forecasting performance of the model in terms of turning
points and cycles.

A simple specification can entail a white-noise process, reflecting measurement errors. An
alternative is a MA(1) specification ut = �t+��t−1 with � < 0; in this case, a large transitory
shock today to the cyclical dynamics is largely corrected the next period.8

7When computational speed is not of the essence or when expectational variables are part of the simulta-
neous system, say in the VAR, the solution algorithms for linear rational expectation models easily apply and
simplify the model specification.

8This specification may be more useful in forward-looking structural models, where expectations are cru-
cial. For instance, with a persistent inflation dynamics an MA(1) specification alongside with an other shock will
create ‘short’ and ‘long’ cons-push shocks with dramatically different dynamics, accommodating high-frequency
volatility in inflation.
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Closed-Economy Model: Summary

[A] Aggregation:

yt = ȳt+ ŷt+uy,t (11)

�t = �̄t+ �̂t+upi,t (12)

it = max[ît+ īt, ifloor,t]+ui,t (13)

[B] Cyclical Dynamics:
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[C] Trend Component:

ȳt = ȳt−1+gt∕4+uȳ,t (15)

gt = �ggt−1+(1−�g)gss+ug,t (16)

�̄t = �̄t−1+u�̄,t and E[�t+j|t] = �̄t for j →∞ (17)

īt = r̄t+ �̄t (18)

r̄t = �r̄r̄t−1+(1−�r̄)r̄ss+ur̄ (19)

iNt|t = (1∕N)
N
∑

i=0
it+i|t forN = 4, 20, 40. (20)
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The TC-VAR model is inherently a state-space model with some observed and some unob-
served variables. Hence, all the tools and the flexibility of state-space modeling is available to
be used with TC-VARs.

B. Small-Open-Economy TC-BVAR

The SOE TC-BVAR follows the principle of the closed economy model, with a few modifica-
tions both to the trend and the cyclical component of the model.

(a) Cyclical component: In the cyclical component, the openness dimension introduces
possibly new variables, namely the exchange rate and a set of foreign-country variables–
foreign output, inflation, interest rates, commodities etc. As is common in the literature, let
us denote the vector home variables as Yt and foreign variables by Y⋆t . The exchange rate
must belong to the set of home, or domestic, variables.

Then, when plausible, the cyclical component of the model clearly must respect the small-
open-economy condition that domestic variables do not have effects on the foreign variables,
that is:

[

A011 A012
0 A022

][

Yt
Y⋆t

]

=

[

A11,1 A12,1
0 A22,1

][

Yt−1
Y⋆t−1

]

+⋯+

[

A11,k A12,k
0 A22,k

][

Yt−k
Y⋆t−k

]

+

+

[

C11 C12
0 C22

][

et−k
e⋆t−k

]

. (21)

Although the block-zero restrictions on the model in (21) may seem obvious and are present
in large part of the literature, there is still abundance of models that fail to acknowledge the
small-open-economy assumption in either either the shock loadings or the dynamics of the
model. In situations when the small-open-economy assumptions are less clear-cut, a case for a
tighter SOE prior can be made for the relevant coefficients.

(b) Trend component: The trend component specification can take many different forms,
depending on the nature of the model (monetary policy, trade forecasts, etc.) and the degree
of prior restrictions wished to be exercised, but there are some worthy lessons to draw from
the literature and economic theory.
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Figure 2. Macroeconomic Trends: Poland vs. Euro Area

1999:1 2004:1 2009:1
0

10

20

30

40

50

60
GDP, 100*log

 

 
PL
EA

1999:1 2004:1 2009:1
−2

0

2

4

6

8

10

12
Inflation, q/q annualized

 

 
Headline CPI
Target (mean)
15% Trimmed Mean

1999:1 2004:1 2009:1
−40

−20

0

20

40

60

80

100
Real Exchange Rate, 100*log

1999:1 2004:1 2009:1
0

5

10

15

20
Policy Rates, % p.a.

The trends can be specified more or less flexible, when the increasingly tighter theoretical
restrictions (common trends, constant shares, etc.) are tested and if beneficial for the purpose
of the model, then retained. The TC-VAR framework is flexible to what extent the theory is
embraced. Fig. 2 illustrates how important it is to acknowledge trends in real exchange rate,
different long-term growth rates or different inflation targets between the economies and their
implied trend of nominal interest rates.

In principle, a flexible specification for trend output of home and foreign economy that are not
functionally linked is feasible. A transition economy with higher growth rates (Poland or the
Czech Republic) than more advanced countries, the euro area core members, may be cycli-
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cally connected but the trend growth rate can be thought of as independent to the process of
economic transition. When feasible and with sufficient available, cross-correlation of innova-
tions to trend growth and permanent level shocks can specified, with a prior centered around
zero, for instance:

yℎt = yℎt−1+g
ℎ
t ∕4+uȳ,t+�1u

⋆
ȳ,t (22)

gt = �ggt−1+(1−�g)gss+ug,t+�2u⋆g,t. (23)

Such specification is, however, making the model even more complex and thus strong pri-
ors on �1,�2 are recommended. For instance, even semi-structural models usually ignore
the cross-country inter-linkages at low frequencies, see Carabenciov and others (2008b) or
Andrle and others (2009) for SOE. It is usually not worth deviating from �1 = �2 = 0, the
model is still very flexible and the forecast horizon is open to expert judgment.

The new home variable is the real exchange rate and the (log) real exchange rate trend, zt;
we assume the nominal exchange rate level is implied from the real exchange rate and infla-
tion process in home and foreign economy. For many countries, the real exchange rates have
important low-frequency dynamics. The cyclical component of the real exchange rate is part
of the home vector in the VAR model. The specification can follow the local-level model as:

zt = z̄t+ ẑt (24)

z̄t = z̄t−1+gz,t∕4+uz̄,t (25)

gz,t = �gzgz,t−1+(1−�)gz,ss+ugz,t. (26)

Inflation target process is specified as in the case of the closed economy. The same can hold
for the real interest rate trend, or it can reflect the arbitrage principle and risk-premium aug-
mented uncovered interest parity (UIP). Note, that in the VAR, the short-term the UIP does
not hold, unlike in structural models. To reflect the arbitrage in the trend components one can
assume that

r̄t = r̄⋆t +premt+(z̄t+1|t− z̄t), (27)

or some less restrictive version of the constraint, possibly ignoring the expectation trends.
For the purpose of short-term forecasting with TC-BVARs, especially with high-frequency
data, ignoring these constraints is perfectly feasible. The detrending of the real exchange rate
itself is the key requirement for the model, with the VAR not explaining all frequencies of the
exchange rate.
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C. State-Space Form – Costs and Benefits

When all the pieces of the model are put together, the model takes a standard state-space
form:

Yt = K1+ZXt+Ret (28)

Xt = K2+TXt−1+Het. (29)

The cost of the TC-VARs is that the model is more complex than a simple VAR with all com-
ponents observed. The benefit of TC-VARs is that all the standard tools, namely the Kalman
filter and smoother, can be used with the model, see Harvey (1989) or Durbin and Koopman
(2012). Linearized DSGE models have identical state-space reduced-form representation.9

Given the state-space form of the model, unconditional or conditional forecasting with the
model is easy and well documented in the literature, see Beneš, Binning, and Lees (2008),
for instance. Dealing with missing variables and now-casting of selected components of Yt,
is well-documented and simple in the Kalman filter and smoother framework, see Harvey
(1989).

When external information or expert judgment is available about the unobserved components
of the model in the historical sample, it can be accommodated by the use of auxiliary obser-
vations of the information, following Doran (1992), see Andrle (2013b) for details about ‘fil-
ter expert judgment’.

9In principle, TC-BVAR model can be easily estimated using IRIS or Dynare toolbox for Matlab. The pub-
licly available code for this paper is adjusted to be used with the IRIS Toolbox for Matlab, to leverage the report-
ing and time-series features of the toolbox.
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III. TC-BVAR ESTIMATION WITH SYSTEM PRIORS

A. Motivation and Intuition

Estimation of TC-BVAR models can be ill-behaved in short samples with no priors about the
parameters, due to the higher number of coefficients and the flexibility of the model. Priors
are needed.

We use two types of priors for estimating the TC-VAR models, which can be used for any
Bayesian VAR: (i) Bayesian Shrinkage priors Litterman (1986), and (ii) System Priors reflect-
ing more economically-meaningful concepts, see Andrle and Plašil (2016) and Andrle and
Beneš (2013).

Bayesian shrinkage is a concept mostly associated with BVARs to fend off over-parameterization
of VARs, especially with limited data. Following Litterman (1986) the literature on shrink-
ing VAR parameter values towards a zero (for stationary systems), with parameters loading
variables of higher lag-length more tightiely shrunk to zero. Effectively, the dynamical coeffi-
cients, Ai,j,k, are endowed with aN(0,�i,j,k) prior distribution.10

System priors may complement or substitute the shrinkage priors for the TC-BVAR mod-
els and both the VAR portion and the trend specification of the model may benefit from it.
System priors are priors about the computable features of the model, an example being a
frequency-specific distribution of the output variance, or speed of convergence of the VAR
model to the trend component. In structural VAR specification, the priors may reflect the eco-
nomic theory priors about the impulse-response function of the model. Some specific exam-
ples of system priors are given in the empirical examples below.

B. Formal Implementation

The most general form of estimation with system priors is based on the likelihood function
and a composite prior p̃ – a result of updating a prior on individual coefficients with a system

10Using Normal distribution is the most common option in the literature, but once the model is not specified
using conjugate priors and exploring any analytical forms, the options are wider and Bayesian LASSO would be
a sensible choice as well .



20

prior ‘likelihood’ and observed data likelihood functions:

p(�|Y) ∝ L(Y|�) × [S(Z|�) × p(�)] , (30)

∝ L(Y|�) × p̃(�|S(Z)). (31)

Here L(Y|�) denotes the likelihod function of the VAR model and p(�) is a proper joint prior
the parameters in �, which includes all dynamical and stochastic ones. S(Z|�) is a ‘likeli-
hood’ function for the system priors Z.11

There are two intuitive ways of looking at (30). As always in the Bayesian estimation, one can
view the posterior mode as maximum likelihood estimation with penalization function p(.)
or p̃(.). Another view, is to view (30) as a three-step sequential updating process. In the first
step a distribution of coefficients � is updated, or reweighed, by the system priors S(Z|�) to
obtain a composite prior p̃(.) In this sense the system priors play a role of dummy observa-
tions, albeit a nonlinear ones. The new composite prior is then further updated by the model
and the actual observed data via the likelihood function L(Y|�).

Computationally, the approach can be rather straightforward in principle, using either impor-
tance sampling (IS), sequential importance sampling (SMC), or Metropolis-Hastings (MH)
algorithms, for instance. Given a k-th draw of parameters �k from a suitably chosen proposal
density, its posterior probability is obtained by evaluating p(�k), the system prior function
S(Z|�k), and the likelihood function L(Y|�k).

In particular, two approaches are suggested below for how to proceed with the VAR analysis
with system priors, see Appendix for details. Both approaches are motivated by a ‘continua-
tion’ idea, where one starts with a simple-to-solve problem and gradually moves to the actual,
more difficult, problem. In the first approach, one starts directly with numerical search for the
posterior mode. This is facilitated by the fact that the ‘penalized’ likelihood estimation can
be initiated using the least-squares (maximum-likelihood) estimates of the model, which is
easy to obtain. In the second approach, the SMC, the continuation idea is incorporated in the
process of tempering the distribution. One starts with the draws from the marginal prior dis-
tribution and gradually adds information from the system priors and the likelihood function of
the model. The SMC approach is also very easy to parallelize to speed up the computations.

11For instance, the example given in the introduction, a prior on the peak of inflation effect for a 1% demand
shock, z�,y, distributed as z�,y ∼ (0.5,0.10) and which clearly depends on �, may help to make the notation
of p(Z|�) more concrete. The likelihood function, in addition to marginal prior p(�) is penalized when z�,y gets
into tails of its assumed distribution.
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As is usual in the case of Bayesian inference, the devil is in the detail of choosing the suitable
proposal density to sample from. For low-dimensional system with a few variables and short
lag structure, importance sampling using the prior distribution p(�) works reasonably well
and can easily be parallelized to harness the power of modern computers.

C. Misspecification and Alternatives to Log-Likelihood

The discussion above assumed, as is almost always the case with the VAR models, that the
loss function for estimation of the model is the log-likelihood of the state-space form of the
model, obtained via one-step-ahead forecast error decomposition, see Durbin and Koopman
(2012). This is an optimal approach, if the model is a true data generated process and there is
no misspecification.

However, when misspecification is suspected, the log-likelihood is not optimal anymore.
Also, depending on the intended use of the model, one-step-ahead forecast error may not be
the criterion deemed as the most important for evaluating the model. There is a large litera-
ture about the use of multi-step ahead forecast errors as the criterion for specifying empirical
models and its link to misspecification, see Tiao and Xu (1993), the insightful frequency-
domain considerations by Haywood and Tunnicliffe-Wilson (1997), or recent use for VAR
models by Schorfheide (2005) using a plug-in estimator and multi-step iterated approach in
Franta (2016), or for DSGE models by Kapetanios, Price, and Theodoridis (2015) and Tonner
and Bruha (2014).

The use of Bayesian analysis, and the use of marginal priors and system priors, is consistent
with alternative loss function for the estimation of the model motivated by feature matching
Y. and Tong (2011) or method-of-moments Andrle (2013a), after appropriate transformation
of the loss function, see Chernozhukov and Hong (2003), for instance.12

The frequency-specific modeling approach of TC-BVARs may ameliorate the misspecifica-
tion and the need for alternative loss functions, in our experience. Acknowledging both high-
frequency dynamics, or measurement noise, together with low-frequency flexible processes
does help increase medium-horizon forecasting performance of the models, in our experience.

12The TC-BVAR code base associated with the papers allows for user-defined criterion functions, alongside
the default log-likelihood or optinal weighted multi-step-ahead forecast error with weights for each horizon.
This follow the insight of Haywood and Tunnicliffe-Wilson (1997) who demonstrate the frequency-specific filter
nature of the multi-step forecast errors.
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IV. EMPIRICAL APPLICATIONS

A. Baseline TC-BVAR for the United States

In this section a minimal TC-VAR model is estimated for the United States. The TC-BVAR
model is estimated as a system, with unobserved trends and cycles using log-likelihood and
Bayesian shrinkage and system priors. The model is specified for output, inflation, and inter-
est rates and is mostly illustrative. Despite its simplicity, the model is no ‘straw man’ and we
discuss extensions that would likely lead to increased forecasting accuracy for a real-world
application.

In the first step, the initial values for cyclical portion of the model were obtained using a
simple BVAR with cyclical components obtained univariate high-pass filters.13 In the sec-
ond step, all coefficients are estimated jointly using the likelihood function of the full model,
marginal priors on individual parameters and desired shrinkage, as well as system priors on
selected properties of the overall model. No homotopy steps were needed for the US model,
given the size of the sample and data. Also, the results for the US are satisfactory with the
log-likelihood being the criterion function, alongside the priors.

Although we provide a system-wide estimation of the full state-space model in this paper, it is
our experience that estimation of the first step with careful calibration of the trend component
of the model leads to very good results for practical forecasting work and makes the estima-
tion problem simpler.

For the VAR(k) model, the model has been estimated with k = 2, though choosing k = 1
leads to comparable results, given the shrinkage effects at the second-order lag. The Bayesian
shrinkage prior on the VAR dynamic coefficients are chosen in a rather traditional way: the
higher the lag, the stronger shrinkage to zero, see below. Note, there is no constant term in the
VAR model for cyclical components.

Selected details on the marginal prior and posterior distributions are in the Appendix, the text
mainly motivates the key choices for priors.

Marginal Independent Priors for the Trend Components:

13Such a treatment of the initial values for the optimization is not necessary in our model, starting from the
prior mode is very effective as well.
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The marginal-independent prior distributions for the coefficients driving the trend compo-
nent of the model reflect our a priori view that the changes in the trend components should be
relatively smooth, with potentially long-lived deviation from their respective steady states or
steady-state growth rates.

For simplicity, we assume that the long-term growth of the economy is 2.5% a year. The prior
for the standard deviation of the permanent level innovation is around 0.1 to 0.05 % of GDP
per quarter. The trend growth of output is mean-reverting but a persistent process, with �g
prior centered around 0.95. The innovation to annualized trend growth of output has a stan-
dard deviation of 0.12 per quarter. Alternative assumptions about the long-term growth can be
made, for instance using real-time historical average, long-term growth survey expectations,
or setting �g = 1 as sometimes seen in the literature.14

We make a prior assumption that the trend real rate of interest is a rather smooth (with small
variance of innovations), mean-reverting variable. The deviations of the real trend interest
rate from the ultimate steady-state value can be protracted, however.15

The priors about the variance of the inflation target innovation is irrelevant in our case, as we
observe the data for ten-year-ahead inflation expectations, which pin down the inflation target
uniquely, setting ��̄ = 1.

‘Shrinkage’ Priors for Cyclical Components

The ‘shrinkage’ priors follow the bulk of the Bayesian VAR literature, being used to deal with
the over-parameterization of the VAR models. Since the VAR describes the cyclical com-
ponent, required to be stationary, the shrinkage priors on individual coefficients is towards
zero. We can assume a ‘ridge-regression’ type of prior, using Normal distribution prior on the
dynamical coefficients, following Litterman (1986), or zero-mean Laplace distribution, fol-
lowing Park and Casella (2008) or Chen and others (2008) for empirical work. For simplicity
and comparability with the BVAR literature, Normal distribution is used for the US model.
Note, that ‘shrinkage’ priors do not guarantee the stationarity of the cyclical portion of the
model.

14Specifying the growth rate of potential output as a unit root significantly increases the potential for real-
time revision of the unobserved components estimates. The assumption, however, is very potent with observing
long-term expectations from the Survey of Professional Forecasters when available, to discipline the estimates

15A posteriori, the estimates approach the upper value of stationarity as close as possible, so in practical
application the the unit-root specification should be considered.
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The prior for a dynamical coefficient, aijk, in equation i, loading variable j with a lag k, is
given by:

aijk ∼N(0, saijk) saijk = �1×
�2
k�3

×
�2i
�2j
. (32)

The coefficients �1 drives the overall level of shrinkage, the degree of tilting the parame-
ter towards zero for all variables at all leads. The coefficient �2 is an additional shrinkage
for cross-variable relationships, with �2 = 1 when i = j. The coefficient �3, on the other
hand determines the increase in shrinkage as the lag-length increases. The scaling for cross-
variable coefficients, �i∕�j , is in principle unknown residual variance. Often, it is approxi-
mated by univariate AR regression residuals, in our case based on univariate pre-filtering, or
omitted.

The prior for covariance matrix of the one-step-ahead forecast errors is specified following
the BVAR literature. However, the system priors will be later affecting the variance of the
cyclical component as it plays an important role in the determination of trends and cycles.

For the forecasting, not a structural VAR, the prior for the covariance matrix of the forecast-
error terms in the cyclical component, Σe, where Σe = CC′, is determined as Inverted-Wishart
prior with a “prior” covariance matrix Se and degrees of freedom �s:

Σe ∼ IW(Se,�s) (33)

and thus the kernel of the prior distribution for Σe is given by

Σe ∝ |Σe|−(�s+N+1)∕2 exp
[

−1
2
tr(Σ−1e Se)

]

. (34)

The prior covariance matrix Se is considered diagonal, with the diagonal elements given by
s2i . For TC-VARs without structural identification and structural priors about the C matrix
is not distinguished, or can be simply specified by a convenient factorization of the covari-
ance matrix. For small-open-economy models, the Cholesky transformation can be used, for
instance.16

System priors:

System priors are priors about the features of the model, not individual parameters. System
priors can be applied both the cyclical and trend component, mainly as a watchdog of a pri-

16For structural TC-VARs with priors about C the priors will reflect the economics behind the identification
and the prior for structural shocks covariance matrix will be diagonal but not necessarily unitary.
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ori desirable properties of the forecasting model. Such system priors may not be binding or
relevant for most of the parameter space but will kick in when needed.

The key system prior for the TC-BVAR, a dogmatic prior that cannot be updated, is the require-
ment that the cyclical part of the model be stationary. The rest of the model, the low-frequency
portion, need not to be stationary.

To make sure the dynamics of inflation, output, and interest rate is well-behaved in terms of
convergence properties, we impose priors on effect of the initial-condition impulse-response
function. We want to eliminate strong secondary cycles (or tertiary cycles) and too persis-
tent dynamics, so that inflation and output cyclical components settle timely to ther long-run
trends.

To restrict the duration of the response to shocks and initial conditions, we require that the
variable, say inflation gap, settles after T1 periods to zero. Let z denote the ratio of the abso-
lute value of the sum of the response to a shock or initial value up to period T1 over the sum
of absolute value of the response up to period T2 > T1, with T2 being significantly larger.
Then, we specify a prior z ∼ N(1,�z) with the hyper-parameter �z denoting the tightness
of the prior restriction. If z deviates significantly from unity, it is an evidence that there is a
significant dynamics beyond the horizon T1. The system prior on z statistic is particularly
important as the lag-length of the VAR increases. This prior serves as a backstop for highly
infeasible dynamics, so the we choose T1 = 20, five years.

Further, we want to exercise a priori views about the frequency-domain behavior of the model
and there are many options to choose from. For instance, Andrle and Plašil (2016) suggest a
prior about the fraction of the variance of a variable coming from the business cycle frequen-
cies. In principle, a dominant portion of variance of ŷt should come from cyclical frequencies
and if high-frequency component, ẏt, is specified it is important to restrict it to operate on
high frequencies and to restrict its contribution to overall variance of the variable. This is a
prior we use for high-frequency component of inflation, u�,t , specified as a zero-mean white
noise, with variance �2u� .

The inflation process is modeled as �t = �̄t+ �̂t+u�,t and due to the assumption of zero cross-
correlation the spectral density of inflation, S�(!), and its variance are additive in the three
components. The marginal prior for the variance of u�,t follows IG(� = 0.1,� = 0.05), the
contribution to overall variance of �̂t + u�,t is limited to ten percent. Alternatively, system
prior on contribution to variance at particular frequencies can be specified. However, with the
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spectrum of u�,t being flat, the above priors are sufficient to keep u�,t from overwhelming the
dynamics of inflation.17

The other case for a system priors are prior views directly about the filter frequency-response
function (FFRF) of the model, X(!) =�(!)Y(!), and implied filter gains.18 Filter frequency-
response function indicates how the estimated unobserved components at different frequen-
cies are formed by the input data. We specify a prior about the cut-off frequency, defined
as the frequency where half of the input series’ power spectrum is retained and half of the
power is eliminated, for output gap and log-level of output and interest rate trend and level of
interest rates. For output, we set the cut-off frequency prior asN(cy,�cy), where cy, in terms
of periodicity, corresponds to the cut-off frequency of the univariate Hodrick-Prescott filter
with �ℎp = 1600(?).19 For the interest rate trend, our our prior is to have the trend interest
rate rather smooth and to use only very low-frequency dynamics of the observed data to go
through, so we specify the cut-off frequency at a periodicity of forty quarters.20

For the students of the business cycles wishing to avoid explicit frequency-domain calcula-
tions and priors a somewhat crude but very useful way of eliciting priors for the trend-cycle
decomposition, motivated by seminal paper on Hodrick-Prescott (Leser) filter. In the base-
line HP filter specification, the parameter �ℎp, denotes the ratio of the variance of the output
gap to variance of the potential output acceleration, that is �ℎp = var(ŷt)∕var(Δȳt−Δȳt−1). In
the baseline HP specification, unrealistically, ŷt is assumed to be white noise and Δȳt follows
a random walk, leading to a poor implicit forecasting performance and thus large real-time
revision variance. Specifying a system prior about the ratio above is one way of restricting the
behavior of the filter for general models, with implicit prior affecting both dynamical and sto-
chastic coefficients of the model. Priors about features of the filter transfer function, however,
can be more nuanced.

Simply put, with system priors a penalty is imposed on such elements in the parameter space,
that do not conform to this requirement. Any meaningful statistic that can be computed using

17Although the more complex prior is not used, the frequency-distribution of contribution to the variance is
checked and reported in the appendix.

18See or for frequency-domain analysis of state-space models and theory of linear filters.
19In principle, another way of specifying a prior on the shape of the gain of the filter is to measure a distance

between a profile of a univariate band-pass or a high-pass filter, say HP filter, and the model’s implied gain, etc.
20The estimation sample used below does not feature the Great Financial Crisis, and with a rather stiff trend

real interest rate, the trend nominal interest rate is not declining much after 2008. This does, expectedly, make
the forecast of the policy rate revert quickly towards the trend level during the initial years of the crisis. With an
estimation sample including the recession, the posterior estimates imply a higher cut-off frequency of the filter
and more flexible trend real rate of interest.
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the model can be a candidate for system priors, depending on the analysts prior belief and the
structure of the model.21

(c) Results: The results for the U.S economy are based on the simplest TC-VAR speci-
fication above. The observed variables are real GDP level, measured as the chained index,
100× log(GDP ), FED short-term policy rates, measured in percent p.a., median inflation of
Federal Reserve Bank of Cleveland, in percent annualized, and of the Survey of Professional
Forecasters’ (SPF) ten-year-ahead outlook of consumer inflation.

The inflation target variable is directly linked to the SPF’s inflation expectations measure, not
smoothed for simplicity. Linking to the model-implied inflation expectations ten years ahead
makes no difference, due to the horizon length and the stationarity of the cyclical portion of
the model.22 The inflation expectations are assumed to be unit-root and thus the interpretation
of the forecast must, especially in the early portion of the sample, should acknowledge the
quasi real-time changing endpoint of the inflation forecast and implications for the level of
trend nominal interest rate.

The estimation sample is 1985:Q1–2006:Q4, excluding the Great Recession period. The crite-
rion function for the baseline version of the model is the model’s log-likelihood, based on the
one-step-ahead forecast error in principle. As the TC-VAR model is most certainly misspeci-
fied, the log-likelihood optimality may not hold and other criterion functions may serve better
for different applications but the log-likelihood is used for comparability with the VARs in the
literature. The appendix illustrates the results with a multi-step ahead forecast criterion.

The recursive forecast are unconditional forecasts, with the unobserved states identified real-
time using the Kalman smoother up to the initial period of each forecast. These forecast fea-
ture no expet judgment and the period 2007:Q1 onwards is truly an out-of-sample exercise.

The results in Fig. 3 and the RMSEs in Tab. 1 suggest that the simple TC-BVAR model has a
forecasting performance comparable with the literature, see Carabenciov and others (2008a).
Note that the unconditional forecast error of the level of GDP is obviously not defined and
thus it is increasing with the forecast horizon.

21For details on VARs and SVARs with System Priors, see [Andrle and Plasil, 2017].
22Should we measure, say, one-year-ahead inflation expectations with the model either for parameter estima-

tion or just for forecasting, the link would need to be to the model-implied expectations and the results would be
affected, of course.
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Figure 3. Recursive Forecasts 3Y Ahead: Estimation Sample 1985:Q1–2006:Q4
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Table 1. RMSEs for the US TC-BVAR

Variable t+1 t+4 t+8 t+12

GDP level (100*log) 0.54 1.66 2.63 3.51
GDP Growth (QoQ, ann. %) 2.17 2.27 2.19 2.25
GDP Growth (YoY, %) 0.54 1.66 1.59 1.67
Median Inflation (QoQ, ann. %) 0.48 0.52 0.66 0.69
Median Inflation (YoY, %) 0.12 0.36 0.49 0.59
Short-Term Interest Rate (%, p.a.) 0.36 1.14 1.70 1.91

Note: The estimation sample is 1985:Q1–2006:Q4. The RMSE evaluation sample is up to 2017:Q1
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Although the paper illustrates mainly the forecasting with TC-BVARs, nothing keeps the ana-
lyst from inspecting the analysts the trend and cyclical components of the model in detail and
assign interpretation to them, see Fig. 4. Implicitly, the model provides an estimate of the
‘output gap’ with implicit monetary policy reaction function and Phillips curve nexus embod-
ied in the model. Fig. 7 in the Appendix illustrates the model-implied decomposition of infla-
tion into cyclical and high-frequency component. The presence of high-frequency component
of inflation improves the forecasting ability of the model.

The estimate seem to suggest that the short-run Phillips curve in the United States is healthy
and alive, as long as the trends and cycles are handled appropriately. Of course, priors mat-
ter in the estimation. Policymakers care about measures of ‘output gap’ in order to assess the
cyclical policy of the economy and choose the monetary policy stance, as inflation and unem-
ployment are intertwined with the output gap. Every measure of the output gap is thus mean-
ingful only in a context of a particular model. In our simple model, the measure of output gap
is consistent with and co-identified by the inflation dynamics such that the forecast errors are
minimized. Our measure of the ‘output gap’ really does help to forecast inflation.

Another feature of the model that helps in deciding about the design of the model is the mag-
nitudes of the real-time revisions of the unobserved components. Fig 5 depicts the quasi real-
time estimates of the cyclical position of the economy against the final estimate using the
whole sample available. The real-time revisions are kept low due to two important properties
of the filter induced by the TC-BVAR model estimated. First, the model features a reasonably
high forecasting n-steps-ahead performance, and, second, the implied weights of the filter are
not too widely spread out due to the mean-reverting cyclical component and mean-reverting
growth rate of the output trends.23

Our baseline model also features reporting equations for the yield curve, expressed in terms
of expectations theory of the interest rates. The Trend-Cycle VAR implies an expected path of
interest rates, using which one-year, five-year, and ten-year ahead interest rates can be com-
puted. Figure 6 depicts the policy rate, the estimate of the five-year and ten-year ahead inter-
est rates, together with the estimate of the term premium for the ten-year zero-coupon bond
and comparison with the estimate from the model by Kim and Wright (2005).24 The estimate
of the term premium from the TC-VAR model is comparable with the estimates used by the

23For details and comparison to the Hodrick-Prescott filter, see Andrle (2013b)
24The Kim and Wright (2005) model estimates are sourced from the St. Louis FRED database,

https://fred.stlouisfed.org/series/THREEFYTP10



30

Figure 4. Estimated Trend and Cyclical Components
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Federal Reserve Board, see Canlin, Meldrum, and Rodriguez (2017). After accounting for the
term-premium stochastic process, the expectations variables can be linked to the data, com-
plementing or replacing the long-term inflation expectations. The trend-cycle nature of the
model is key for realistic model properties, with well-defined, possibly time-varying steady
state.

(d) Plausible and Simple Model Extensions: The model can be extended in multiple ways
and the alternatives assessed in terms of their forecasting quality.

One possible specification is to make the growth trend GDP to become a unit root as opposed
to assumed mean-reverting specification in the current model. Such model may possibly
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Figure 5. Final and Quasi Real-Time Estimates of the Outpu Cycle
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better capture the period in early 2000s with the GDP growth above the previous long-run
averages with firms and households possibly believing in the new normal with permanently
higher GDP growth. Such specification is more flexible, poses greater estimation challenge.
Apart from system priors on the behavior of the non-stationary trend growth rate, another
possibility is to extract some information from the SPF’s survey of ten-year ahead GDP growth
and selected quarters of the year, analogous to the SPF’s long-term inflation observation.

A priori, there is no reason to believe that observing the SPF’s long-term inflation expecta-
tions and thus, implicitly, defining inflation target in the model provides a superior forecast-
ing performance as opposed to a more flexible specification with the trend unobserved and
smoothed or measuring the long-term inflation expectation with a measurement error, pos-
sibly time-varying, and thus only hinting on the plausible dynamics of the inflation target.
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Figure 6. Model-Implied Estimate of the Term Premium
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The issue arises due to the differences between the survey and the trend obtained from the
two-sided band-pass filter. Lastly, the model is easily extended with the yield-curve struc-
ture implied by the model and long-term interest rates can be observed to provide information
about the long-term real interest rate and long-term inflation.
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B. TC-BVAR for Global Oil Price

An example of the model where distinguishing between low-level frequencies and cyclical
dynamics is also modeling of oil prices. Specifically, the oil prices could be considered as
cyclical fluctuations along the time-varying path of the trend, or equilibrium, oil price as
determined mostly by supply-side considerations.

The reason for modeling the trend of the oil prices is that modeling the oil prices in levels or
in growth rates in a VAR does not adequately capture the oil price trend growth changes, due
to evolution of the supply side of the market.

We will assume that the price of oil, in logarithms, pt, consist of trend, cycle, and high-frequency
component: pt = p̄t+ p̂t+"

p
t .

The VAR model is specified using cyclical components of the oil price, cyclical component
of the global production, and the cycle of oil production.
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V. CONCLUSION

This paper has proposed Trend-Cycle Bayesian VARs for forecasting and policy analysis. TC-
BVARs describe the trend components and the cyclical components of macroeconomic vari-
ables using different specification, the flexible VAR being used for the cyclical component
and a form of local-level model for trends.

The notion of frequency-specific models is motivated by economic theory, that acknowledges
that long-run growth and economic cycles are often dominated by different shocks and trans-
mission mechanisms. Based in the time domain perspective, TC-VARs allow to model growth
and cycles in a more nuanced way.

From the forecasting point of view, the cyclical component of the model will settle towards
the trend component of the model, which is well specified and often informed by satellite
models. The consequence is that the assessment of uncertainty using the model may result
in smaller confidence bands and clear distinction if the uncertainty comes from the business
cycle or the trends.

Trend-Cycle BVARs are no panacea. However, they do offered a better-behaved alternative
to forecasting with standard BVARs, due to their well-anchored medium-run dynamics and
possibly less biased cyclical dynamics. TC-BVARs are still just a reduced-form time series
methods that can under no circumstances replace the need for structural models for economic
analysis. TC-BVARs, being a flexible over-parameterized models, need enough macroeco-
nomic data of reasonable quality to be estimated, though both shrinkage- and system priors
alleviate this burden to some extent.
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VI. APPENDIX

VII. ADDITIONAL RESULTS FOR THE BASELINE U.S. TC-BVAR MODEL

Figure 7. Estimated Components of Inflation
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VIII. ESTIMATION TECHNIQUES

A. Computing Posterior Mode, with and without Homotopy

One approach to inference for VARs with system priors is to compute the posterior mode and
then make use of it when employing inspection of the posterior distribution. Also, estimating
the posterior mode can be viewed as a non-Bayesian constrained likelihood estimation, so
common in engineering and applied econometrics.

The problem (30) can be rewritten as

logp(�|Y) ∝ �
[

logL(Y|�) + logS(Z|�)
]

+ logp(�), � ∈ [0,1] (35)

where � is a parameter of a continuation (homotopy) problem.

For � = 1, the numerical optimization of the posterior is very direct. For complex models, in
principle, one could start with a small weight given to the data and/or to system priors and
initiate the model from the mode of the prior distribution.Note, where not for the fact that
the TC-BVAR model features unobserved trends, a regular BVAR model could use system
priors very differently, as the likelihood for a regular VAR is trivial to obtain, and thus one
can proceed in reverse, from the likelihood to incorporation of prior information, see [Andrle
and Plasil, 2017].

Explicit optimization of (35) is especially feasible for small and medium-sized VAR mod-
els, despite the number of parameters growing fast with the number of variables and the lag
length. Yet, in comparison with sampling techniques for Bayesian inference and room for
parallelization of the optimization, computing gradients, for instance, we view this direct
approach as a prime candidate for employment of system priors in practice for small- to medium-
sized models.

The posterior mode �̂pm and the inverse Hessian matrix �̂pm evaluated at the posterior mode
can be used directly for analysis and inference, or for initializing a posterior sampler. ?, for
instance, use {�̂pm, �̂pm} in multivariate t-distribution to create a proposal distribution for
importance sampling algorithm for the posterior of a dynamic stochastic general equilibrium
(DSGE) model.

Due its ease of implementation, computing the prior mode and analysis of the posterior dis-
tribution using importance sampling presents a viable option, despite the well-known draw-
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backs of the importance sampling, namely with high-dimensional parameter vector �. Given
the posterior mode estimate and �̂, a t-distribution or Gaussian mixture proposal is ‘embar-
rassingly parallel’ and requires little tuning of sampling hyper-parameters, compared with
other, more efficient, sampling methods. It is also easy to assess the quality of the posterior
distribution approximation, using the measures like perplexity, or effective sample size. See
the Appendix for detail of the algorithm.

B. Sequential Monte Carlo Approach to Approximate Posterior

One way of proceeding with the analysis of a VAR with system priors is to follow a set of
methods known as sequential Monte Carlo methods. The idea, again, is to start with a rela-
tively simple problem and move towards the actual problem of interested that is more chal-
lenging to solve. This time, again, the starting point is sampling from the prior distribution,
not the finding the posterior mode. Sequential Monte Carlo (SMC) methods are, in principle,
better designed to deal with multi-modal posterior distribution, unlike the importance sam-
pling initiated at one of the posterior modes.

The principle of the approach, is in sync with the previous section on finding the posterior
mode with a homotopy, starting from the prior distribution. Sampling from the prior distribu-
tion is easy and fast and the information from the system priors and the likelihood function is
added gradually to update the proposal distribution.

Sequential Monte Carlo methods are related to importance sampling, as this is the first step.
In general, one creates a set of distributions, {�n} for n = 0,… , as target distributions,
starting from �0 that is easy to sample from. Usually, this is the prior distribution. Let the
sequence of target distributions to approximate be given by

�n = p(�|Y)�np(�)(1−�n) with �0 = 0,� = 1, n = 0,… , . (36)

The design implies that �0 = p(�), the marginal prior, and that at the final stage � should
be equal to the posterior distribution, p(�|Y). The idea is that for a given ‘tempering sched-
ule’, {�n}, the sequence of distribution is gradual and that the sampled particles approximate
well the new distribution. The profile of {�n} is particularly important, as if � increases too
quickly, the likelihood and system priors dominate the marginal priors distribution too fast
and the very reason for sequential updating gets lost as the particle impoverishment can be
significant.
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Details of the algorithm are described in the appendix, draw from the literature, in particu-
lar we follow closely Herbst and Schorfheide (2014). The following is just a recap for read-
ers familiar with SMC methods. After an initial draw from a distribution that is easy to draw
from, an importance sampling step is carried out to obtain a set of particles �s and their weights
Ws. A rejuvenation step follows, where the particles are resampled if the measure of the effec-
tive sample size, measuring a quality of the approximation, gets below a certain threshold.
The latest step for a given n is a move, where a suitable Markov Chain (MC) kernel, (., .),
is used to propagate each particle to ameliorate the degeneracy of particles. The details of
the algorithm can be found in the appendix, as it is a straightforward extension of Herbst and
Schorfheide (2014).
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IX. MONTE-CARLO COMPUTATIONS

A. Importance Sampling Algorithm

1. Use numerical optimization, possibly with a continuation (homotopy) to estimate a
posterior mode �̂pm and compute the inverse of Hessian �̂pm evaluated at the posterior
mode

2. Denote v(�) a multivariate t-distribution with a covariance matrix c× �̂pm

3. Sample j = 1,… ,N draws from v(�). An j-th draw is denoted �(j)

4. Compute the importance weights, w̄j , and normalized importance weights, wj , using

w̄j =
p(�|Y,Z)
v
(

�(j)
)
=
L(Y|�(j))×S(Z|�(j))×p(�(j))

v
(

�(j)
)

, wj =
w̄j

∑N
j=1 w̄j

5. For a function ℎ(�), approximate the posterior expected value by

ℎ(�) =
N
∑

j=1
wj ×ℎ(�(j))

Defficiencies of the standard importance sampling algorithm are rather well known. If the
proposal distribution v(.) is not sufficiently close to the target distribution, the posterior distri-
bution in this case, the approximation can be poor. The larger is the dimension of the parame-
ter vector �, the more challenging can be the use of importance sampling.

B. Sequential Monte Carlo Algorithms

Sequential Monte Carlo (SMC) algorithms are variants of the importance sampling algo-
rithm, where the idea is to start from a distribution that is easy to draw from, often the prior,
and to sequentially develop improved approximation to final target distribution.

We build a sequence of distributions {�n} for n = 0,… , , such as

�n = p(�|Y)�np(�)(1−�n) with �0 = 0,� = 1, n = 0,… , . (37)

The algorithm is as follows, drawing from ?:
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1. INITIALIZATION:

Set �0 = 0 and draw J initial particles from the marginal prior, p(�) ∶

�j1 ∼ p(�), W j
1 = 1, j = 1,… ,J .

2. LOOP: For n = 2,… , ,

(a) Correction step:
Reweight particles from the previous stage by updating the weights to reflect dis-
tance between the distributions

wjn =
p(�jn−1|Y)

�np(�jn−1)
(1−�n)

p(�jn−1|Y)
�n−1p(�jn−1)

(1−�n−1)
=
[

L(Y|�jn−1)×S(Z|�
j
n−1)

]�n−�n−1
,

W j
n =

wjnW n−1j

1
J
∑J
j=1w

j
nW

j
n−1

for j = 1,… ,J .

(b) Selection step:
Compute the measure of the approximation quality based on weights’ variance,
the so called effective sample size, ESS,

ESS = J ×

[

1
J

J
∑

j=1
(W j

n )

]−1

.

If ESS < J∕2, resample the particles using multinomial or other suitable resam-
pling technique, based on the particle system {�jn−1,W

j
n−1}. Denote the resampled

particles �̂
j
n andW

j
n = 1, ∀j.

If ESS ≥ J∕2, simply keep the current particle system and set �̂
j
n = �

j
n−1, with

W j
n left unchanged.

(c) Mutation step:
Propagate the candidate particles, {�̂

j
n,W

j
n }, usingM steps of Metropolis-Hasting

algorithm with transition kernel �jn ∼ Kn(�
j
n|�

j
n;�), where � is a vector of parame-

ters of the kernel. The kernel and the M-H step are detailed below.

3. STOP:
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When n= and �n = 1, use the particle system {�j ,W
j
 } to compute the expectation

of a funcion ℎ(�) w.r.t. � = p(�|Y,Z) using

ℎ̂(�) =
J
∑

j=1
ℎ(�j )×W

j
 .
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