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System Priors

System priors:

Prior views about system properties of the model.
These may be complex functions of all underlying parameters.

System priors are very explicit, transparent, economically
meaningful, and can relate to any of the model’s properties.

Your boss and colleagues will understand your priors.
And can disagree.



Aren’t My Priors Obious?



ROUND 1:
Examples and Intuition

“Invert, always invert. (Carl Jacobi) ”



AR(2) Example

Assume an AR(2), say a model of an output gap

yt = φ1yt−1 + φ2yt−2 + εt εt ∼ N(0, σ2)

What are plausible priors for φ1, φ2?

Is choosing φ1 ∼ N(0, σφ1) and φ2 ∼ N(0, σφ2) reasonable?



AR(2) Example

Assume an AR(2), say a model of an output gap

yt = φ1yt−1 + φ2yt−2 + εt εt ∼ N(0, σ2)

What are plausible priors for φ1, φ2?

Is choosing φ1 ∼ N(0, σφ1) and φ2 ∼ N(0, σφ2) reasonable?

Let’s use a system prior:

stationarity
+

“around” 60% of variance from cyclical frequencies
It’s an output gap, right?



AR(2) Example – Joint Prior
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AR(2) Example – Joint Prior
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AR(2) Example – Smaller Sub-Space
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Figure 1. Admissible regions for the parameters
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ior of the model. For this purpose the prior-predictive distribution of models’ properties need
to be analyzed. For the AR(2) looking at the impulse-response function and the spectral den-
sity fits the bill.

Fig. 2 depicts impulse response functions and spectral densities for two system priors, i.e.
for two admissible regions (with frequency driven by the distribution of parameters in the
admissible region). One can easily see that the condition of stationarity does not restricts the
process in an overly narrow way, while the spectral system prior limits the behavior of the
model quite significantly. This system prior is not diffuse, it is very informative. It is also very
transparent and easy to communicate and easy to agree or disagree with for the public.



AR(2) Example: Implications of Priors. . .

4

Figure 2. Model Properties for Admissible Regions
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Note: The business cycle frequencies denoted by the shaded region.

III. CONCLUSION

This short note provided an example of using system priors for analysis and estimation of
time series. The lessons from the Mickey Mouse AR(2) model are applicable and easily imple-
mentable for a large class of univariate or multivariate time series models, including Bayesian
Vector AutoRegressions (BVARs) and structural BVARs.

Details of the implementation of system priors, further discussion, and an application with
a Dynamic New-Keynesian model is provided in Andrle and Benes (2013) and the reader is
invited to pursue the topic in detail.



Simple DNK Model Example
Simple New-Keynesian “gap” model used for illustration:

yt = α1yt+1|t + α2yt−1 + α3(rrt − rr t ) + ε
y
t (1)

πc
t = λ1π

c
t+1|t + (1 − λ1)π

c
t−1 + λ2ŷt + επt (2)

it = γ1it−1 + (1 − γ1)×
[
(rr t + πt ) + γ2(π

y/y
c,t+3|t − πt+3) + γ3yt

]
+ εi

t (3)

rrt = it − πt+1|t (4)

πt = πt−1 + επt (5)

Standard practice:
Specify marginal independent priors for {α1, α2, α3, λ1, . . . }



Economists Have Views on Sacrifice Ratio. . .

Sacrifice ratio:
Cumulative loss of output after a permanent disinflation by 1
percentage point.

System prior:
Assume the sacrifice ratio to be distributed as N(−0.8,0.05).

Note:
I Individual-country data samples uninformative about sacrifice rat.
I Cross-country evidence on disinflation is often available. . .
I Sacrifice-ratio prior does not violate the likelihood principle



System Prior Ties Down Parameters. . . (Some)
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System Priors Do What They’re Supposed To
Prior distribution of the sacrifice ratio. . .
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DSGE: Some Priors We Have Used. . .

I Properties of IRFs
(signs, speed of convergence to SS, tertiary cycles, . . . )

I Spectral properties of the model
(measurement errors, shock contrib. at freq. bands)

I Spectral properties of the filter transfer function
(gains, cut-offs, . . . )

I Shock-decomposition priors
(in year 200X shocks did this and that)

I Policy scenarios
(sacrifice ratio, delayed MP response, . . . )

I . . .



TC-VAR: Examples of SPriors We Have Used. . .

I Steady-state priors
(intercept is not the slope. . . )

I Properties of IRFs
(signs, speed of convergence to SS, tertiary cycles,
statonarity,. . . )

I Spectral properties of the model
(measurement errors, variance at BC freqs.)

I Spectral properties of the filter transfer function
(output-gap gains, cut-offs, . . . )

I Shock-decomposition priors
(in year 200X shocks did this and that)

I . . .



System Priors (References)

Details on Methodology:
I Andrle and Beneš, IMF WP 2013 (DSGE Applications)
I Andrle and Plašil, IMF WP 2016 (TSeries Applications)

Implementations:
I ECB’s New Area Model (NAWM) toolbox YADA
I Codes for IRIS Toolbox
I Codes for Dynare Toolbox
I AR(2) Example code for R



ROUND 2:
Issues with Current Practice



. . . is this enough information?



Does this substitute for prior predictive tests. . . ?



Issues with ‘standard DSGE’ priors (1)

I Assumption of independent marginal priors is often
unrealistic

I Reporting only marginal parameter prior and posterior
distributions is not informative enough

I Independent priors induce unintended consequences for
the prior distribution of model features (IRFs, moments,
etc.)

I Independent marginal priors are not always transparent
enough; looking at them gives you often no clue. . .

I Very little or no economics of “adjustment-costs”
coefficients or similar priors. . .



Issues with ‘standard DSGE’ priors (2)

Marginal independent priors give little control over priors!

I Overly diffuse marginals imply loose control over a
particular system feature of the model. . .

I Overly tight marginals give little chance for data to speak

I Marginal priors are too blunt for economically meaningful
priors

Prior-predictive analysis often absent (but badly needed)
I What is the prior distribution of your monetary policy shock IRF?
I Could the response of labor to a TFP shock be positive in your model at

all? Do priors tilt it that way?



System Priors: Motivation

I Economically meaningful. . .

I Top-Down vs. Bottom-Up Specification. . .
I Calibrated models use[d] top down specification

I Top down priors on system behavior of the model

I Top down approach allows you to implement priors that
make sense and that other economists would understand

I System priors induce cross-dependence among
parameters

I A prior on a model feature is consistent with a set of
parameterizations (iso-parametric path)

I Just one system prior is enough to induce a joint
distribution prior across multiple structural parameters



ROUND 3 – FINAL:
Theory and Computation

“Premature optimization is the root of all evil. . . ” (D. Knuth)



Bayesian Updating ≡ Inverse Probability

Method of Inverse Probability:

P(A|B) =
P(B|A)× P(A)

P(B)
(6)



Bayesian Updating

A model M with parameters θ ∈ Θ. Observed data, Y o.

Likelihood function L(Y |θ; M)

Marginal independent priors:
pm(θ) = p(θ1)× . . .× p(θN)

Bayesian learning – use data to update your priors:

p(θ|Y o; M) ∝ L(Y o|θ; M)× pm(θ). (7)

BUT the prior p(θ) can be anything, as long it’s a distribution. . .



System Priors

Let’s keep marginal independent priors on parameters: pm(θ).

Specify a system feature r = h(θ; M), for θ ∈ Θ.
Example: IRFs, sacrifice ratio, . . .

System prior about feature r = h(θ; M):

ps(r |θ; M) ≡ ps(h(θ; M)|θ; M) (8)

Bayesian update – use the r-likelihood to update pm(θ):

pc(θ|r ; M) ∝ ps(h(θ)|θ; M)× pm(θ). (9)



System Priors – Putting it All Together

Given the marginal priors, system priors, and the data:

Bayesian updating:

p(θ|Y o,M) = L(Y o|θ; M)× [ps(h(θ); M)× pm(θ)]



System Priors – Putting it All Together

Given the marginal priors, system priors, and the data:

Bayesian updating:

p(θ|Y o,M) = L(Y o|θ; M)× [ps(h(θ); M)× pm(θ)]

This is not a short-cut.
Not a trick.

Please, try this at home!



System Priors: Computations

Loss function with three components:
(i) likelihood function (or other criterion function), L(Y o|θ,M)

(ii) marginal independent priors, pm(θ|M)

(iii) system priors, pS(r |M), with r = h(θ)

Posterior sampling:
I Simple extension of standard MCMC, e.g. RW-Metropolis
I To sample from spriors, ‘switch-off’ the likelihood!

I Due to the global nature of composite prior, adaptive
Sequential Monte-Carlo is preferred (massively parallel)

Available for: YADA (ECB Tbx), DYNARE, IRIS, . . .



System Priors: Pseudo-Code
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PSEUDO CODE: 

 
[crit]  = function(theta, Model, Data, logsprior_user_fun, … ) 
BEGIN 
  
 

 /* Evaluate the marginal priors:  p
m
(θ)]. */ 

 IF (do_mprior == TRUE) 
  Log_mprior = evalMarginalPriors(theta, hyperParameters); 
 ELSE 
  Log_mprior = 0; 
 END 
 

 /* Evaluate the SYSTEM priors:  p
s
(h(θ);M)*/ 

 IF (do_sprior == TRUE) 
  Log_sprior = call(@logsprior_user_fun(theta, Model, Data); 
 ELSE 
  Log_sprior = 0;  
 END 
 

 /* Evaluate the likelihood or other criterion function: L(Y|θ;Μ) */ 
 IF (do_loglik == TRUE) 
  Log_lik  = evalLoglikelihood(theta, Data, Model); 
 ELSE 
  Log_lik  = 0; 
 END 
 
 
 /* Assemble and return the posterior value */ 
 crit = Log_lik + Log_sprior + Log_mprior 
  
END 
 

 

  



Relationship to the Literature

I Faust (2009) and Gupta and Faust (2011) point out unintended
consequences of ‘standard’ marginal independent priors using
prior-predictive analysis

I Geweke (2010) discusses prior-predictive analysis at length

I Canova and Sala (2010) point out identification problems of DSGE
models

I Fernandez-Villaverde and Rubio-Ramirez (2008): How Structural are
Structural Parameters?

I Work of E.T. Jaynes on priors and max-ent priors and ‘moment
approach’ to prior selection in J.O. Berger (1985)



Conclusions

I System priors are the economically meaningful way of
using priors

I System priors may solve many problems of marginal
independent priors

I System priors induce individual parameter priors

I System priors encompass ‘standard’ way of doing things



Thank you for your patience. . .


