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Abstract

In this paper we describe the Identification package developed at JRC

for the DYNARE environment. The package implements methodolo-

gies and collects developed algorithms to assess identification of DSGE

models in the entire prior space of model deep parameters, by com-

bining ‘classical’ local identification methodologies and global tools for

model analysis, like global sensitivity analysis.

∗This work is funded by FP7, Project MONFISPOL, Grant no. 225149.

1



1 Summary

In developing the identification software, we took into consideration the most

recent developments in the computational tools for analyzing identification

in DSGE models. A growing interest is being addressed to identification

issues in economic modeling (Canova and Sala, 2009; Komunjer and Ng,

2009; Iskrev, 2010b). The identification toolbox includes the new efficient

method for derivatives computation presented in Ratto and Iskrev (2010a,b)

and the identification tests proposed by Iskrev (2010a,b).

1.1 Main features of the software

The new DYNARE keyword identification triggers the routines developed

at JRC. This option has two modes of operation.

Point estimate : this is the default option.

• when there is a prior definition for a subset of model parameters

that are going to be estimated, the program performs the local

identification checks for the parameters declared in the prior defi-

nition at the prior mean (prior mode, posterior mean and posterior

mode are also alternative options);

• when there is no prior definition for model parameters, the pro-

gram computes the local identification checks for all the model

parameter values declared in the DYNARE model file. The pa-

rameter values used for identification computations are those de-

fined in the model declaration.
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Monte Carlo exploration : when information about prior distribution is

provided, a full Monte Carlo analysis is also possible. In this case, for

a number of parameter sets sampled from prior distributions, the local

identification analysis is performed in turn. This provides a ‘global’

prior exploration of local identification properties of DSGE models.

This Monte Carlo mode can also be linked to the the global sensitivity

analysis toolbox, also available in the official DYNARE as of version

4.3 (currently downloadable as the ‘unstable’ DYNARE).

A library of test routines is also provided in the official DYNARE test

folder. Such tests implement some of the examples described in the present

document.

Kim (2003) : the DYNARE routines for this example are placed in the

folder dynare_root/tests/identification/kim;

An and Schorfheide (2007) : the DYNARE routines for this example are

placed in dynare_root/tests/identification/as2007;

2 DSGE Models

We recall here the notation adopted in Iskrev (2010b) for linearized DSGE

models and the restrictions they imply on the first and second order moments

of the observed variables. Readers can refer to the latter paper for a more

detailed discussion of the identification criteria.

3



2.1 Structural model and reduced form

A DSGE model can be expressed as a system g of m non-linear equations:

Et

(

g(ẑt, ẑt+1, ẑt−1,ut|θ)
)

= 0 (1)

where ẑt is am−dimensional vector of endogenous variables, ut an n-dimensional

random vector of structural shocks with Eut = 0, Eutu
′

t = In and θ a

k−dimensional vector of deep parameters. Here, θ is a point in Θ ⊂ Rk and

the parameter space Θ is defined as the set of all theoretically admissible

values of θ.

Most studies involving either simulation or estimation of DSGE models

use linear approximations of the original models around the steady-state ẑ∗,

namely:

Γ0(θ)zt = Γ1(θ) Et zt+1 + Γ2(θ)zt−1 + Γ3(θ)ut (2)

where zt = ẑt − ẑ∗. The elements of the matrices Γ0, Γ1, Γ2 and Γ3 are

functions of θ.

Assuming that a unique solution exists, it can be written as:

zt = A(θ)zt−1 +B(θ)ut (3)

where the m×m matrix A and the m× n matrix B are functions of θ.

For a given value of θ, the matrices A, Ω := BB′, and ẑ∗ completely

characterize the equilibrium dynamics and steady state properties of all en-

dogenous variables in the linearized model. Typically, some elements of these

matrices are constant, i.e. independent of θ and it is useful to separate the
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solution parameters that depend on θ from those that do not. Iskrev (2010b)

uses τ to denote the vector collecting the non-constant elements of ẑ∗ , A,

and Ω, i.e. τ := [τ ′

z, τ
′

A, τ
′

Ω]
′, where τz, τA, and τΩ denote the elements of

ẑ∗, vec(A) and vech(Ω) that depend on θ.

In some cases, ‘trivial’ singularities in the model dependency w.r.t. θ

can directly tracked in the structural form (2), so here we will also use γ to

denote the vector collecting the non-constant elements of Γ0, Γ1, Γ2 and Γ3,

i.e. γ := [γ ′

Γ0
, . . . , γ ′

Γ3
]′, where γΓi

denote the elements of Γi that depend

on θ.

In most applications the model in (3) cannot be taken to the data directly

since some of the variables in zt are not observed. Instead, the solution of

the DSGE model is expressed in a state space form, with transition equation

given by (3), and a measurement equation

xt = Czt +Dut + νt (4)

where xt is a l-dimensional vector of observed variables and νt is a l-dimensional

random vector with Eνt = 0, Eνtν
′

t = Q, where Q is l× l symmetric semi-

positive definite matrix 1.

In the absence of a structural model it would, in general, be impossible to

fully recover the properties of zt from observing only xt. Having the model

in (2) makes this possible by imposing restrictions, through (3) and (4),

on the joint probability distribution of the observables. The model-implied

restrictions on the first and second order moments of the xt are summarized

1In the DYNARE framework, the state-space and measurement equations are always
formulated such that D = 0
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next (see Iskrev, 2010b, for more details).

2.2 Theoretical first and second moments

From (3)-(4) it follows that the unconditional first and second moments of

xt are given by

Ext := µx = s (5)

cov(xt+i,x
′

t) := Σx(i) =











CΣz(0)C
′ if i = 0

CAiΣz(0)C
′ if i > 0

(6)

where Σz(0) := E ztz
′

t solves the matrix equation

Σz(0) = AΣz(0)A
′ +Ω (7)

Given the observed data XT := [x′

1, . . . ,x
′

T ]
′, and the corresponding covari-

ance matrix ΣT

ΣT := EXTX
′

T

=



















Σx(0), Σx(1)
′, . . . , Σx(T − 1)′

Σx(1), Σx(0), . . . , Σx(T − 2)′

. . . . . . . . . . . .

Σx(T − 1), Σx(T − 2), . . . , Σx(0)



















(8)

σT is the vector collecting the unique elements of ΣT , i.e.

σT := [vech(Σx(0))
′, vec(Σx(1))

′, ..., vec(Σx(T − 1))′]′
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As in Iskrev (2010b) we can then define mT := [µ′,σ
′

T ]
′, a (T − 1)l2 +

l(l + 3)/2-dimensional vector collecting the parameters that determine the

first two moments of the data. Assuming that the linearized DSGE model

is determined everywhere in Θ, i.e. τ is unique for each admissible value of

θ, it follows that mT is a function of θ. If either ut is Gaussian, or there

are no distributional assumptions about the structural shocks, the model-

implied restrictions on mT contain all information that can be used for the

estimation of θ. The identifiability of θ depends on whether that information

is sufficient or not. This is the subject of the next section, where the main

results and identification criteria of Iskrev are summarized.

3 Identification

This section recalls the role of the Jacobian matrix of the mapping from θ

to mT for identification, as discussed in Iskrev (2010b), and summarizes the

main computational results concerning its analytic derivation.

3.1 The rank condition

In most applications the distribution of X is unknown or assumed to be

Gaussian. Thus, the estimation of θ is usually based on the first two moments

of the data. If the data is not normally distributed, higher-order moments

may provide additional information about θ, not contained in the first two

moments. Therefore, identification based on the mean and the variance of

X is only sufficient but not necessary for identification with the complete

distribution. In general, there are no known global conditions for unique
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solutions of systems of non-linear equations, and it is therefore difficult to

establish the global identifiability of θ. Local identification, on the other

hand, can be verified with the help of the following condition

Theorem 1. Suppose that mT is a continuously differentiable function of θ.

Then θ0 is locally identifiable if the Jacobian matrix J(q) :=
∂mq

∂θ′
has a full

column rank at θ0 for q ≤ T . This condition is both necessary and sufficient

when q = T if ut is normally distributed.

Note that, J(T ) having full rank is necessary for identification from the

first and second order moments. Therefore, when the rank of J(T ) is less

than k, θ0 is said to be unidentifiable from a model that utilizes only the

mean and the variance ofXT . A necessary condition for identification in that

sense is that the number of deep parameters does not exceed the dimension

of mT , i.e. k ≤ (T − 1)l2 + l(l + 3)/2.

Another necessary condition discussed in Iskrev (2010b) reads:

Corollary 1. The point θ0 is locally identifiable only if the rank of J2 =
∂τ
∂θ′

at θ0 is equal to k.

The condition is necessary because the distribution of XT depends on θ

only through τ , irrespectively of the distribution of ut. It is not sufficient

since, unless all state variables are observed, τ may be unidentifiable.

The local identifiability of a point θ0 can be established by verifying

that the Jacobian matrix J(T ) has full column rank when evaluated at θ0.

With the help of the Jacobian matrix we can detect problems that are a

common cause for identification failures in these models. If, for instance,

a deep parameter θj does not affect the solution of the model, ∂mT

∂θj
- the
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column of J(T ) corresponding to θj , will be a vector of zeros for any T , and

the rank condition for identification will fail. Another type of identification

failure occurs when two or more parameters enter in the solution in a manner

which makes them indistinguishable, e.g. as a product or a ratio. As a result

it will be impossible to identify the parameters separately, and some of the

columns of the Jacobian matrix will be linearly dependent. For small scale

models, like Cochrane (2007) or Kim (2003), these problems are discovered

by solving the models explicitly in terms of the deep parameters. That

approach, however, is not feasible for larger models, which can only be solved

numerically. However, the Jacobian matrix in Theorem 1 is straightforward

to compute analytically for linearized models of any size or complexity, as

shown in (Iskrev, 2010b) and in Ratto and Iskrev (2010a,b). We summarize

these results next.

3.2 Computing the Jacobian matrix

The simplest method for computing the Jacobian matrix of the mapping from

θ to mT is by numerical differentiation. The problem with this approach is

that numerical derivatives tend to be inaccurate for highly non-linear func-

tions. In the present context this may lead to wrong conclusions concerning

the rank of the Jacobian matrix and the identifiability of the parameters in

the model. For this reason, Iskrev (2010b) applied analytical derivatives, em-

ploying implicit derivation. As shown in Iskrev (2010b), it helps to consider

the mapping from θ to mT as comprising two steps: (1) a transformation

from θ to τ ; (2) a transformation from τ to mT . Thus, the Jacobian matrix
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can be expressed as

J(T ) =
∂mT

∂τ ′

∂τ

∂θ′
(9)

The derivation of the first term on the right-hand side is straightforward since

the function mapping τ into mT is available explicitly (see the definition of

τ and equations (5)-(7)); thus the Jacobian matrix J1(T ) := ∂mT

∂τ ′
may be

obtained by direct differentiation.

The elements of the second term J2(T ) :=
∂τ
∂θ′

, the Jacobian of the trans-

formation from θ to τ , can be divided into three groups corresponding to the

three blocks of τ : τz, τA and τΩ. In order to properly compute the deriva-

tives of τA and τΩ, the structural form (2) has to be re-written explicitly

accounting for the dependency to ẑ∗:

Γ0(θ, ẑ
∗)zt = Γ1(θ, ẑ

∗) Et zt+1 + Γ2(θ, ẑ
∗)zt−1 + Γ3(θ, ẑ

∗)ut (10)

Taking advantage of the DYNARE symbolic pre-processor and after some

implicit derivation steps, discussed in Ratto and Iskrev (2010a,b), all the

derivatives information of the structural form (10) can be obtained.

The derivatives of τA and τΩ can be obtained from the derivatives of

vec(A) and vech(Ω), by removing the zeros corresponding to the constant

elements of A andΩ. In Iskrev (2010b) the derivative of vec(A) is computed

using the implicit function theorem. Such a derivation requires the use of

Kronecker products, implying a dramatic growth in memory allocation re-

quirements and in computational time as the size of the model increases. The

typical size of matrices to be handled in Iskrev (2010b) is of m2 ×m2, which
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grows very rapidly with m. Here we apply the alternative method discussed

in Ratto and Iskrev (2010a,b), which allows to reduce both memory require-

ments and the computational time, where it is shown that the derivation

problem can be cast in the form of a generalized Sylvester equation and can

be solved using available algebraic solvers. In practice the single big algebraic

problem of dimension m2 × m2 of Iskrev (2010b) is replaced by a set of k

problems of dimension m × m. This allows a significant gain in computa-

tional time of the Sylvester equation solution with respect to the approach

in Iskrev (2010b), making the evaluation of analytic derivatives affordable

also for DSGE models of medium/large scale, enabling to perform detailed

identification analysis for such kind of models.

4 Analyzing local identification of DSGEmod-

els: DYNARE implementation

4.1 Identification analysis procedure

The local identifiability of the parameter set θ is established using the nec-

essary and sufficient conditions discussed by Iskrev (2010b):

• Finding that matrix J2 is rank deficient at θ implies that this particular

point in Θ is unidentifiable in the model.

• Finding that J2 has full rank but J(T ) does not, means that θ cannot

be identified given the set of observed variables and the number of

observations.

11



• On the other hand, if θ is identified at all, it would typically suffice to

check the rank condition for a small number of moments, since J(q)

is likely to have full rank for q much smaller than T . According to

Theorem 1 this is sufficient for identification; moreover, the smaller

matrix may be much easier to evaluate than the Jacobian matrix for

all available moments. A good candidate to try first is the smallest q

for which the order condition is satisfied, and then increase the number

of moments if the rank condition fails;

• the present DYNARE implementation also analyzes the derivatives of

the LRE form of the model (JΓ = ∂γ
∂θ′

), to check for ‘trivial’ non-

identification problem, like two parameters always entering as a product

in Γi matrices;

• whenever some of the matrices J2, J(T ) or JΓ is rank deficient, the

code tries to diagnose the subset of parameters responsible for the rank

deficiency: this is done by doing a number of tests

1. if there are columns of zeros in the J(·) matrix, the associated

parameter is printed on the MATLAB command window;

2. compute pairwise- and multi-correlation coefficients for each col-

umn of the J(·) matrix: if there are parameters with correlation

coefficients equal to unity, these are printed on the MATLAB com-

mand window;

3. take the Singular Values Decomposition (SVD) of J(·) and track

the eigenvectors associated to the zero singular values.
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4.2 Identification strength

The previous conditions are related to whether of not columns of J(T ) or J2

are linearly dependent. Another typical avenue in DSGEmodels is weak iden-

tification: in this case it is interesting to rank model parameters in terms of

strength of identification. A measure of identification strength is introduced,

following the work of Iskrev (2010a) and Andrle (2010). This can be based on

either using the asymptotic information matrix or using simulated moments

uncertainty mapped onto the deep parameters.

Asymptotic Information Matrix. Given a sample size T , the Fischer in-

formation matrix IT (θ) is computed as discussed in Iskrev (2010a).

Simulated moments. The uncertainty of simulated moments is evalu-

ated, by performing stochastic simulations for T periods and com-

puting sample moments of observed variables; this is repeated for Nr

replicas, giving a sample of dimension Nr of simulated moments; from

this the covariance matrix Σ(mT ) of (first and second) simulated mo-

ments is obtained. A ‘moment information matrix’ can be defined as

IT (θ|mT ) = J ′

2 · Σ(mT ) · J2;

The procedure implemented in DYNARE takes the following steps:

1. given the information matrix (either the true one or the one based on

simulated moments), the strength of identification for parameter θi is

defined as

si =
√

θ2i /(IT (θ)−1)(i,i) (11)

which is a sort of a priori ‘t-test’ for θi;
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2. as discussed in Iskrev (2010a), this measure is made of two compo-

nents: the ‘sensitivity’ and the ‘correlation’, i.e. weak identification

may be due to the fact that moments do not change with θi or or that

other parameters can compensate linearly the effect of θi; the sensitivity

component is defined as

∆i =
√

θ2i · IT (θ)(i,i) (12)

3. as an alternative option to ‘normalize’ the identification strength mea-

sures, in place of using θi, the toolbox also uses the value for its prior

standard deviation σ(θi), i.e.:

spriori = σ(θi)/
√

(IT (θ)−1)(i,i)

∆prior
i = σ(θi) ·

√

IT (θ)(i,i)

this normalization for the identification strength weights the informa-

tion derived from the likelihood using the prior uncertainty; this is

specially useful to distinguish those cases where (11) is singular simply

because θi ≈ 0 (e.g. for parameters whose prior distribution is centered

in zero) and therefore θi should NOT be flagged as non- (or weakly)

identified.

The default of the identification toolbox is to show, after the check of rank

conditions, the plots of the strength of identification and of the sensitivity

component for all estimated parameters.
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4.3 Analyzing identification patterns

Identification patterns are essentially tracked in two ways:

1. As suggested by Andrle (2010), the identification patterns are shown

by taking the singular value decomposition of IT (θ) or of the J(q)

matrix and displaying the eigenvectors corresponding to the smallest

(or highest) singular values;

2. As discussed in Iskrev (2010b), it is also interesting to check which

group of one, two or more parameters is most capable to mimic (replace)

the effect of each parameter; in other words, a brute force search is done

for each column of J(q)(j) to detect the group of columns J(q)(I+j),

indexed by I, that has the highest explanatory power for J(q)(j) by a

linear regression.

In this analysis, scaling issues in the Jacobian can matter in interpret-

ing results. In medium-large scale DSGE models there can be as many as

thousands entries in J(q) and J2 matrices (as well as in corresponding mq

and τ matrices). Each row of J(q) and J2 correspond to a specific moment

or τ element and there can be differences by orders of magnitude between

the values in different rows. In this case, the analysis would be dominated

by the few rows with large elements, while it would be unaffected by all re-

maining elements. This can imply loss of ‘resolution’. Iskrev (2010b) used

the elasticities, so that the (j, i) element of the Jacobian is
∂mj

∂θi

θi
mj

. This give

the percentage change in the moment for 1% change in the parameter value.

Here we re-scale each row of J(q) and J2 by its largest element in absolute

15



value. In other words, assuming J2 made of the two rows:







0.1 −0.5 2.5

−900 500 200







multi-collinearity analysis will be performed on the scaled matrix:







0.04 −0.2 1

−1 0.5556 0.2222







The effect of this scaling is that the order of magnitude of derivatives of

any moment (or any τ element) is the same. In other words, this grossly

corresponds to an assumption that the model is equally informative about

moments, thus implying equal weights across different rows of the Jacobian

matrix.

4.4 The optional Monte Carlo implementation

This optional implementation is based on Monte Carlo exploration of the

space Θ of model parameters. In particular, a sample from Θ is made of

many randomly drawn points from Θ′, where Θ ∈ Θ′ discarding values of θ

that do not imply a unique solution. The set Θ′ contains all values of θ that

are theoretically plausible, and may be constructed by specifying a lower

and an upper bound for each element of θ or by directly specifying prior

distributions. After specifying a distribution for θ with support on Θ′, one

can obtain points from Θ by drawing from Θ′ and removing draws for which

the model is either indetermined or does not have a solution. Conditions
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for existence and uniqueness are automatically checked by DYNARE. The

checks for local identification are then performed for each parameter set in

turn, obtaining a Monte Carlo sample of identification features for the model

under analysis.

4.4.1 Sensitivity measures

The identification analysis is linked to the idea of sensitivity analysis, where

the analyst would like to track how model ‘outputs’ (in this case τ or mT

or the likelihood itself) are affected by changes in θ. In a context where

plausible parameter ranges are wide and the associated model features can

significantly change in such a wide domain, global sensitivity analysis (GSA)

provides useful diagnostic tools to measures that importance of the various

parameters. The GSA, the reference measures are the variance-based sensi-

tivity indices (Ratto, 2008).

Let Y be a generic ‘output’ of the model: in this case τ or mT elements.

Given the model structure, the outcome of Y depends on the values of θ. This

dependence can be expressed as a non linear relationship Y = f(θ1, . . . , θk),

whose analytic form is unknown to the analyst. Such a relationship can be

represented by mean of ANOVA (or ANOVA-HDMR) decompositions, where

ANOVA stands for ‘analysis of variance’, the ensemble the statistical tools

for in which the observed variance in a particular variable Y is partitioned

into components attributable to different sources of variation and HDMR

stands for High-Dimensional Model representation (Sobol’, 1990; Gu, 2002).

In ANOVA, the function f is decomposed by means of a finite decomposition
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into terms of increasing dimensionality:

f(θ1, θ2, . . . , θk) = f0 +
∑

i

fi +
∑

i

∑

j>i

fij + . . .+ f12...k (13)

where each term is a function only of the parameters in its indexes, i.e.

fi = f(θi), fij = f(θi, θj) and so on. The various terms are expressed as:

f0 = E(Y )

fi(θi) = E(Y |θi)− f0 (14)

fij = E(Y |θi, θj)− f(θi)− f(θj)− f0

If θ values are sampled independently, all the terms of the decomposition

are orthogonal and the decomposition (13) is unique. The f ′

is are called the

main effects, f ′

ijs are the second order interaction effects, and so on. Each

term of the decomposition tells the analyst how much Y moves around its

mean level f0 as a function of each of the input factors or group of them.

An intuitive way to derive a scalar measure of the importance of θi on the

variation of Y , is to take the variance V (fi) = Vi and compare it to the total

variance V (Y ). Normalizing the partial variances with the unconditional

variance V = V (Y ), the sensitivity indices are obtained: Si = Vi/V (main

effects) , Sij = Vij/V (second order pure interaction effects), etc. Variance

based sensitivity indices provide the percentage of output model variance

which is explained by each input.

Various approaches for estimating variance based sensitivity indices are

available. These may require either the use of specific sampling strategies to
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directly estimate sensitivity indices (Sobol’, 1990; Saltelli et al., 2010) or by

estimating some ‘metamodel’ using a Monte Carlo sample of the mapping f

and deriving sensitivity indices from the metamodel (Oakley and O’Hagan,

2004; Storlie and Helton, 2007; Ratto and Pagano, 2010). In the present

context, running such kind of sophisticated estimators may imply either too

many runs of the model solutions than affordable (specially for medium-large

scale models) or to repeat computer intensive metamodelling estimations for

the large number of ‘outputs’ under consideration (in particular the mT

elements).

For the purpose of the identification toolbox it is sufficient to take an

approximation of the full variance based approach which allows to synthesize

effectively the information coming from the Jacobian J(q). The Jacobian

(i.e. local derivatives) provide per se ‘local’ sensitivity measures and in fact

this has been historically the first approach to sensitivity analysis. It is

also well known that derivative based sensitivity poses some problems of

interpretation, due to scaling issues and to the fact that derivatives may not

be directly comparable to each others and also due to the fact they only

reflect the local behavior of the mapping f possibly leading to erroneous

results. So, first, the derivatives are usually normalized if they ought to be

used for sensitivity purposes: Iskrev (2010b) uses elasticities, implying that

the new sensitivity measure gives the percentage change in the moment for 1%

change in the parameter value. This somehow improves the interpretability

of the measure, but still carries in some issues relative to the specific point

where the derivatives are taken: for example what if derivatives are taken

at a location where θj = 0 or Y = 0? Moreover, no information about the

19



degree of uncertainty about each parameters comes in in such a sensitivity

measure. Therefore, in order to link derivatives to the reference variance-

based measure, it is most advisable to proceed as follows.

Derivatives provide a local approximation of the mapping f around the

specific sample point θ(j) where derivatives are taken:

f(θ) ≈ Y (θ(j)) + J(θ(j)) · (θ − θ(j)) (15)

and the variance based sensitivity indices for this linearized mapping simply

read (assuming independent θ’s):

Si ≈

(

∂Y

∂θi

)2

(j)

· V (θi)/V (Y ) (16)

where V (θi) is the prior variance of each parameter and V (Y ) is the variance

of the model ‘output’ (i.e. mT elements). This approach to scaling deriva-

tives links the local sensitivity to two key global elements: the ‘uncertainty’

about the parameters and the ‘uncertainty’ about the outputs. This mea-

sure provides the portion of the linearized mapping f that is explained by

each parameter. This implies that, if Y has the same derivative w.r.t. two

parameters, the most ‘important’ parameter will be the one with the highest

uncertainty (i.e. variance), since it will be responsible for higher changes in

the output value. With the Monte Carlo exploration of the parameter space,

one will have the availability of these sensitivity measures for each element

of the sample: taking the average of these measures provides a synthetic

measure of sensitivity measure that averages the local effect over the entire
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prior space.

To summarize, the program performs the following steps to compute sen-

sitivity measures of theoretical moments with respect to model parameters:

1. given the MC sample of θ, the sample for mT is stored, allowing to

compute the sample variance for each of their elements V (mj);

2. all computed derivatives are normalized, so that the (j, i) element of

the Jacobian is
∂mj

∂θi

std(θi)
std(mj )

;

3. for each MC sample point we take the norm of the normalized Jacobian,

obtaining one single aggregate sensitivity measure for each parameter

and each sample point;

4. this aggregate measure is finally averaged over the MC sample, provid-

ing the final sensitivity measure reported by the identification toolbox.

In the case of the point estimate (the default case), no direct information

about the variances V (mj) is available. Hence, given the covariance Σθ of

the parameters, the variance of the moments is obtained as J(q) · Σθ · J(q)
′.

5 DYNARE syntax

A new syntax is made available for DYNARE users. The simple keyword

identification(<options>=<values>); triggers the point identification

analysis, performed at the prior mean. Prior definitions and the list of ob-

served values are needed, using the standard DYNARE syntax for setting-up

an estimation.
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Current options are as follows (all options will be discussed in detail in

the Examples section 6):

• parameter set = prior mode | prior mean | posterior mode | posterior mean

| posterior median. Specify the parameter set to use. Default: prior_mean.

• prior_mc = INTEGER sets the number of Monte Carlo draws (default

= 1); prior_mc=1 triggers the default point identification analysis;

prior_mc>1 triggers the Monte Carlo mode;

• prior_range = INTEGER triggers uniform sample within the range im-

plied by the prior specifications (when prior_mc>1). Default: 0

• load_ident_files = 0, triggers a new analysis, while load_ident_files = 1,

loads and displays a previously performed analysis (default = 0);

• ar = <integer> (default = 3), triggers the value for q in computing

J(q);

• useautocorr: this option triggers J(q) in the form of auto-covariances

and cross-covariances (useautocorr = 0), or in the form of auto-correlations

and cross-correlations (useautocorr = 1). The latter form normalizes

all mq entries in [−1, 1] (default = 0).

• advanced = INTEGER triggers standard or advanced identification anal-

ysis (default = 0). In standard identification analysis the rank con-

dition is checked and, if it fails, indicates the parameter(s) that are

not identified; the strength of identification plus the sensitivity com-

ponent is also provided. The advanced identification analysis shows
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a more detailed analysis, comprised of an analysis for the linearized

rational expectation model as well as the associated reduced form so-

lution. Moreover, a detailed information about identification patterns

is also provided, as discussed in Section 4.3. In the collinearity analy-

sis by brute force search of the groups of parameters best reproducing

the behavior of each single parameter (Iskrev, 2010b), the maximum

dimension of the group searched is triggered by max_dim_cova_group.

In the Monte Carlo mode, the advanced options triggers a number of

additional diagnostics: (i) analysis of the condition number of the Ja-

cobians J(q), J2 and JΓ and detection of the parameters that mostly

drive large condition numbers (i.e. weaker identification); (ii) analysis

of the identification patters across the Monte Carlo sample; (iii) de-

tailed point-estimate (identification strength and collinearity analysis)

of the parameters set having the smallest/largest condition number;

(iv) when some singularity (rank condition failure) is detected for some

elements of the Monte Carlo sample, detailed point-estimates are per-

formed for such critical points.

• max_dim_cova_group = INTEGER In the brute force search (performed

when advanced=1) this option sets the maximum dimension of groups

of parameters that best reproduce the behavior of each single model

parameter. Default: 2

• periods = INTEGER triggers the length of the stochastic simulation to

compute the analytic Hessian. Default: 300

• periods = INTEGER When the analytic Hessian is not available (i.e.
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with missing values or diffuse Kalman filter or univariate Kalman filter),

this triggers the length of stochastic simulation to compute Simulated

Moments Uncertainty. Default: 300

• replic = INTEGER When the analytic Hessian is not available, this

triggers the number of replicas to compute Simulated Moments Uncer-

tainty. Default: 100.

• gsa_sample_file = INTEGER If equal to 0, do not use sample file. If

equal to 1, triggers GSA prior sample. If equal to 2, triggers GSA

Monte-Carlo sample (i.e. loads a sample corresponding to pprior=0

and ppost=0 in the dynare_sensitivity options). Default: 0

• gsa_sample_file = FILENAME Uses the provided path to a specific

user defined sample file. Default: 0

5.1 Notes

The analytic derivation procedure takes advantage of the symbolic preproces-

sor of DYNARE. The latter interprets and implements the model definitions

as expressed in the DYNARE file. However, it will not reflect all parameter

definitions which may be hidden in the <>_steadystate.m file. The latter, in

some cases, may include calibration constraints for model parameters. Those

conditions are totally transparent to the preprocessor, and the identification

analysis, which is based on analytical derivatives, will not reflect entirely

the true mapping between structural parameters and the model solution. In

order to obtain a proper operation of the analytic derivation engine, the #
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syntax should be used in the model block of the DYNARE file, providing

the calibration and steady state constraints in a way that can be interpreted

by the pre-processor. Of course, this problem does not affect the DYNARE

estimation engine, which uses numerical derivatives and therefore reflects the

entire set of user definitions, including the steady-state file.

6 Examples

6.1 Kim (2003)

In this paper, Kim demonstrated a functional equivalence between two types

of adjustment cost specifications, coexisting in macroeconomic models with

investment: intertemporal adjustment costs which involve a nonlinear sub-

stitution between capital and investment in capital accumulation, and mul-

tisectoral costs which are captured by a nonlinear transformation between

consumption and investment. We reproduce results of Kim (2003), worked

out analytically, applying the DYNARE procedure on the non-linear form of

the model. The representative agent maximizes

∞
∑

t=0

βt logCt (17)

subject to a national income identity and a capital accumulation equation:

(1− s)
( Ct

1− s

)1+θ

+ s
(It
s

)1+θ

= (AtK
α
t )

1+θ (18)

Kt+1 =

[

δ

(

It
δ

)1−φ

+ (1− δ)K1−φ
t

]
1

1−φ

(19)
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where s = βδα
∆

, ∆ = 1 − β + βδ, φ(≥ 0) is the inverse of the elasticity

of substitution between It and Kt and θ(≥ 0) is the inverse of the elastic-

ity of transformation between consumption and investment. Parameter φ

represents the size of intertemporal adjustment costs while θ is called the

multisectoral adjustment cost parameter. Kim shows that in the linearized

form of the model, the two adjustment cost parameter only enter through an

‘overall’ adjustment cost parameter Φ = φ+θ
1+θ

, thus implying that they cannot

be identified separately.

Here we assume that the Kim model is not analytically worked out to

highlight this problem of identification. Instead, the analyst feeds the non-

linear model (constraints and Euler equation) to DYNARE (also note that

the adjustment costs are defined in such a way that the steady state is not

affected by them).

6.1.1 The default identification procedure

First we run the default identification procedure: point estimate at the prior

mean, standard diagnostics (see Syntax 1). In the list of estimated parame-

ters we have added α (alph) to illustrate the behavior of the program with

other parameters that are identifiable. Observable variables are Ct and It.
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estimated_params;

alph ,uniform_pdf,0.6,0.04,0.5,0.7;

phi ,uniform_pdf,0.5,0.2,0,10;

theta ,uniform_pdf,0.3,0.1,0,10;

end;

varobs c i;

identification;

Syntax 1. Standard identification syntax for the Kim (2003) example.

The printed output in the command window is shown in Box 1 while the

identification strength is shown in Figure 1.

==== Identification analysis ====

Testing prior mean

Evaluting simulated moment uncertainty ... please wait

Doing 100 replicas of length 300 periods.

Simulated moment uncertainty ... done!

WARNING !!!

The rank of H (model) is deficient!

[theta,phi] are PAIRWISE collinear (with tol = 1.e-10) !

WARNING !!!

The rank of J (moments) is deficient!

[theta,phi] are PAIRWISE collinear (with tol = 1.e-10) !

==== Identification analysis completed ====

Box 1. Standard printed output for the Kim (2003) example.

Comments on DYNARE outputs.

The printed output first tells that the point estimate is done for the prior
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mean. Then, the code proceeds with the identification strength: since the

model has two observables and only one shock (technology) the Kalman filter

is rank deficient and the analytic asymptotic Hessian cannot be computed.

Hence, the alternate procedure based on simulated moments uncertainty is

applied. The rank condition fails for both for J2 (called H in the DYNARE

output) and J(q), implying that sufficient and necessary conditions for local

identification are not fulfilled by this model. Moreover, perfect collinearity

among columns for θ and φ is detected both for J2 and J(q), thus allowing

to highlight which combination of parameters is responsible for the lack of

identification. The plot of the strength of identification (Figure 1) tells that

α is identified while identification strength for θ and φ is null (in practice

no bar is shown in the log-scale plot). It is interesting to look at the sen-

sitivity component for the three parameters, which tells that all parameters

have individually an effect on the model behavior, implying that it is indeed

the correlation component that drives the rank-deficiency. The strength of

identification plot is saved in the identification subfolder with the name

MODEL_ident_strength. So, the diagnostic tests implemented in DYNARE

perfectly reveal the identification problem demonstrated analytically by Kim.

This result shows that the procedures implemented in DYNARE can help the

analyst in detecting identification problems in all typical cases where such

problems cannot easily worked out analytically.

It seems also interesting to show here the effect of the number of states

fed to DYNARE on the results of the identification analysis. For simplic-

ity of coding, Lagrange multipliers may be explicitly included in the model

equations. In this case, one would have an additional equation for the La-
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Figure 1: DYNARE identification strength of the Kim model.

grange multiplier λt =
(1−s)θ

(1+θ)C
(1+θ)
t

, with λt entering the Euler equation. The

DYNARE output is shown in Box 2. Under this kind of implementation,

and still assuming that only Ct and It can be observed, the test for J(q) still

the rank deficiency, thus confirming the identification problem. On the other

hand, due to the specific effect of θ on λt, our identification tests would tell

that θ and φ are separably identified in the model, provided that all states

are observed. This exemplifies the nature of the necessary condition stated

in Corollary 1.
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==== Identification analysis ====

Testing prior mean

Evaluting simulated moment uncertainty ... please wait

Doing 100 replicas of length 300 periods.

Simulated moment uncertainty ... done!

All parameters are identified in the model (rank of H).

WARNING !!!

The rank of J (moments) is deficient!

[theta,phi] are PAIRWISE collinear (with tol = 1.e-10) !

==== Identification analysis completed ====

Box 2. Standard printed output for the Kim (2003) example when λt is
included in the variables of the model.

6.1.2 The advanced identification procedure

The advanced identification checks are triggered by the DYNARE commands

in Syntax 2. Note that, to highlight further features of the identification

toolbox, we also added a ‘dummy’ parameter in the estimate parameter list

called dumpy, which does not enter the model.
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estimated_params;

alph ,uniform_pdf,0.6,0.04,0.5,0.7;

phi ,uniform_pdf,0.5,0.2,0,10;

theta ,uniform_pdf,0.3,0.1,0,10;

dumpy ,uniform_pdf,0.5,0.2,0,10;

end;

varobs c i;

identification(advanced=1,max_dim_cova_group=3);

Syntax 2. Example of advanced identification syntax for the Kim (2003)
example.

We can see in Box 3 that first the standard output is printed, showing

that not only θ and φ are not separably identified, but also that dumpy is not

identified (analytic derivatives produce a column of zeros for this parameter).

Then, the program prompts the user to proceed for advanced outputs and

diagnostics, shown in Box 4.

The advanced diagnostics prints the result of the brute force search for the

groups of parameters whose columns of J(q) best explain each column of J(q):

the name of the parameters and the cosine between the J(q) column of each

parameter and of the regressors is displayed. When there is no explanatory

power (like for dumpy), nothing is displayed, and the cosine is null. Moreover,

when there is no improvement in the explanatory power by increasing the

dimension of the candidate group of parameters, no additional regressor is

added (see printed results for 3 parameters) and the cosine does not improve

with respect to the group of smaller dimensionality.

The advanced diagnostics also produces three kinds of additional plots:

the sensitivity plot, the collinearity patterns, the identification patterns à la

Andrle (2010).
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==== Identification analysis ====

Testing prior mean

Evaluting simulated moment uncertainty ... please wait

Doing 100 replicas of length 300 periods.

Simulated moment uncertainty ... done!

WARNING !!!

The rank of H (model) is deficient!

dumpy is not identified in the model!

[dJ/d(dumpy)=0 for all tau elements in the model solution!]

[theta,phi] are PAIRWISE collinear (with tol = 1.e-10) !

WARNING !!!

The rank of J (moments) is deficient!

dumpy is not identified by J moments!

[dJ/d(dumpy)=0 for all J moments!]

[theta,phi] are PAIRWISE collinear (with tol = 1.e-10) !

Press ENTER to display advanced diagnostics

Box 3. Standard printed output for the Kim (2003) example when dumpy

is included in the prior list for estimation.
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Collinearity patterns with 1 parameter(s)

Parameter [ Expl. params ] cosn

alph [ theta ] 0.800

phi [ theta ] 1.000

theta [ phi ] 1.000

dumpy [ -- ] 0.000

Collinearity patterns with 2 parameter(s)

Parameter [ Expl. params ] cosn

alph [ phi theta ] 0.975

phi [ theta -- ] 1.000

theta [ phi -- ] 1.000

dumpy [ -- -- ] 0.000

Collinearity patterns with 3 parameter(s)

Parameter [ Expl. params ] cosn

alph [ phi theta -- ] 0.975

phi [ theta -- -- ] 1.000

theta [ phi -- -- ] 1.000

dumpy [ -- -- -- ] 0.000

==== Identification analysis completed ====

Box 4. Advanced printed output for the Kim (2003) example.
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Sensitivity plot. This plot shows the sensitivity measures computed as de-

scribed in Section 4.4.1, i.e. the norm of the columns of the jacobian

matrices for the moments (J(q)), the model (J2), the LRE model (JΓ)

normalized by the relative uncertainties in model parameters and out-

put values. An example of this is in Figure 2. This plot is saved in the

identification subfolder with the name MODEL_sensitivity.

Collinearity patterns. These plots synthesize the results of the brute force

search à la Iskrev (2010b) already printed in Box 4. Specially for large

models and large number of parameters, these plots allow a quick search

for the critical collinearities (i.e. dark red spots). Examples of these are

shown in Figure 3: the critical combination between θ and φ is clearly

indicated. These plots are saved in the identification subfolder with

the names MODEL_ident_collinearity_*.

Identification patterns. As suggested by Andrle (2010), identification pat-

terns can be analyzed by taking the singular value decomposition of

the Information Matrix or of the Jacobian. The plots produced by the

identification toolbox show in bar form the eigenvectors relative to the

smallest and largest singular values: the former indicate the parame-

ters that are mostly affected by weak or lack of identification, while

the latter indicate parameters that can be best identified. An example

of this for the Kim model is shown in Figure 4. We can see in this

figure that there are two null singular values, one associated to dumpy,

the other associated to the couple [θ, φ]. Moreover, the positive sin-

gular values are associated with α and [θ, φ], indicating that only the
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Figure 2: Sensitivity plot for the Kim model.

linear combination of the latter couple of parameters can be identified.

These plots are saved in the identification subfolder with the names

MODEL_ident_pattern_*.
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6.2 An and Schorfheide (2007)

The model An and Schorfheide (2007), linearized in log-deviations from

steady state, reads:

yt = Et[yt+1] + gt − Et[gt+1]− 1/τ · (Rt − Et[πt+1]− Et[zt+1]) (20)

πt = βEt[πt+1] + κ(yt − gt) (21)

Rt = ρRRt−1 + (1− ρR)ψ1πt + (1− ρR)ψ2(∆yt − zt) + εR,t (22)

gt = ρggt−1 + εg,t (23)

zt = ρzzt−1 + εz,t (24)

where yt is GDP in efficiency units, πt is inflation rate, Rt is interest rate,

gt is government consumption and zt is change in technology. The model is

completed with three observation equations for quarterly GDP growth rate

(Y GRt), annualized quarterly inflation rates (INFt) and annualized nominal

interest rates (INTt):

Y GRt = γQ + 100 ∗ (yt − yt−1 + zt) (25)

INFLt = πA + 400πt (26)

INTt = πA + rA + 4γQ + 400Rt (27)

where β = 1
1+rA/400

.

For this example we will consider and discuss in detail the Monte Carlo

option.
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6.2.1 Standard Monte Carlo procedure

An example of DYNARE syntax for this is shown in Syntax 3: we perform a

loop of 250 local identification analyzes at parameter values randomly chosen

in the prior distributions.

estimated_params;

tau, gamma_pdf, 2, 0.5;

kap, beta_pdf, 0.2, 0.1;

psi1, gamma_pdf, 1.5, 0.25;

psi2, gamma_pdf, 0.5, 0.25;

rhoR, beta_pdf, 0.5, 0.2;

rhog, beta_pdf, 0.8, 0.1;

rhoz, beta_pdf, 0.66, 0.15;

rr_steady, gamma_pdf, 0.8, 0.5;

pi_steady, gamma_pdf, 0.8, 0.5;

gam_steady, gamma_pdf, 0.8, 0.5;

std_R, inv_gamma_pdf, 0.05, inf;

std_g, inv_gamma_pdf, 0.05, inf;

std_z, inv_gamma_pdf, 0.05, inf;

end;

varobs YGR INFL INT;

identification(prior_mc=250);

Syntax 3. Identification syntax for Monte Carlo identification analysis
of the An and Schorfheide (2007) example.

The standard output printed on the command window by the program is

reported in Box 5: the program execution first performs the point estimated

at the prior mean, as in the default execution. Then, it loops over the 250

replicas. The result of the identification analysis indicates that all parameters

are identified in the model and in the moments in the entire prior space. The

graphical output is made of two plots: first the identification strength at

the prior mean (Figure 5), second the Monte Carlo mean of the sensitivity

measures as described in Section 4.4.1 (Figure 6). In this case, the number
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==== Identification analysis ====

Testing prior mean

All parameters are identified in the model (rank of H).

All parameters are identified by J moments (rank of J)

Monte Carlo Testing

Testing MC sample

All parameters are identified in the model (rank of H).

All parameters are identified by J moments (rank of J)

==== Identification analysis completed ====

Box 5. Printed output for the An and Schorfheide (2007) example when the
Monte Carlo option is triggered.

of shocks equals the number of observables, so the asymptotic Hessian of the

likelihood function can be evaluated for the identification strength. In Figure

5 we can see that all parameters are identified: the model parameters on the

x-axis are ranked in increasing order of strength of identification. In the plot

for the sensitivity analysis component and of the Monte Carlo sensitivity, we

can also see that all parameters have a non-negligible effect on the moments.
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Figure 5: DYNARE identification strength at the prior mean for An and
Schorfheide (2007).
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6.2.2 Advanced Monte Carlo procedure

An example of syntax for the advanced Monte Carlo identification procedure

is shown in Syntax 4. For the point-estimate at the prior mean, with the ad-

vanced option, the brute force collinearity analysis à la Iskrev is displayed on

the command window (Box 6) and in graphical form (Figure 7). The latter

is specially informative: in particular we can note the correlation links that

involve ψ1, ψ2 and the autoregressive parameter ρR. The identification pat-

terns à la Andrle are also shown: when the number of estimated parameters

is larger than four, the identification patterns are shown using two panels,

one for the smallest singular values (Figure 8) and the second for the largest

ones (Figure 9). The former spans the weakest identifiable patterns, the

latter spans the strongest ones. Note that these identification patterns take

the SVD of the Hessian. Later on we will see somewhat different patterns

obtained taking the SVD of the Jacobian J(q).

...

identification(advanced=1,max_dim_cova_group=3,prior_mc=250);

...

Syntax 4. Advanced Identification syntax for Monte Carlo identification
analysis of the An and Schorfheide (2007) example.
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Collinearity patterns with 1 parameter(s)

Parameter [ Expl. params ] cosn

tau [ psi1 ] 0.750

kap [ tau ] 0.744

psi1 [ tau ] 0.750

psi2 [ rhoR ] 0.691

rhoR [ psi2 ] 0.691

rhog [ std_g ] 0.615

rhoz [ psi2 ] 0.650

rr_steady [ gam_steady ] 0.707

pi_steady [ rr_steady ] 0.243

gam_steady [ rr_steady ] 0.707

std_R [ psi1 ] 0.726

std_g [ psi1 ] 0.626

std_z [ rhoz ] 0.513

Collinearity patterns with 2 parameter(s)

Parameter [ Expl. params ] cosn

tau [ kap psi1 ] 0.856

kap [ tau rhog ] 0.776

psi1 [ rhoR std_g ] 0.958

psi2 [ rhoz std_z ] 0.911

rhoR [ psi1 std_g ] 0.932

rhog [ psi1 rhoR ] 0.732

rhoz [ psi2 std_z ] 0.932

rr_steady [ pi_steady gam_steady ] 0.718

pi_steady [ psi1 rr_steady ] 0.243

gam_steady [ psi1 rr_steady ] 0.707

std_R [ psi1 rhog ] 0.836

std_g [ psi1 rhoR ] 0.929

std_z [ psi2 rhoz ] 0.885

Collinearity patterns with 3 parameter(s)

Parameter [ Expl. params ] cosn

tau [ kap psi1 psi2 ] 0.907

kap [ tau rhog std_g ] 0.835

psi1 [ rhoR rhog std_g ] 0.970

psi2 [ psi1 rhoz std_z ] 0.960

rhoR [ psi1 rhoz std_g ] 0.959

rhog [ psi1 psi2 rhoR ] 0.821

rhoz [ psi1 psi2 std_z ] 0.962

rr_steady [ psi1 pi_steady gam_steady ] 0.718

pi_steady [ psi1 rr_steady std_R ] 0.243

gam_steady [ psi1 rr_steady std_R ] 0.707

std_R [ psi1 rhog rhoz ] 0.891

std_g [ psi1 rhoR rhoz ] 0.945

std_z [ psi1 psi2 rhoz ] 0.936

Box 6. Printed output for the An and Schorfheide (2007) example when the Monte Carlo option
is triggered.

44



ta
u

tau

ka
p

kap

ps
i1

psi1

ps
i2

psi2

rh
oR

rhoR

rh
og

rhog

rh
oz

rhoz

rr
_s

te
ad

y

rr_steady

pi
_s

te
ad

y

pi_steady

ga
m

_s
te

ad
y

gam_steady

st
d_

R

std_R

st
d_

g

std_g

st
d_

z

std_z

prior
m

ean − Collinearity patterns with 3 parameter(s)
 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7: Brute force collinearity search of one parameter vs. groups of there
other parameters for the An and Schorfheide (2007).
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Figure 8: Identification patterns for the An and Schorfheide (2007) (smallest
singular values).
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Figure 9: Identification patterns for the An and Schorfheide (2007) (largest
singular values).
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When the advanced Monte Carlo is performed, first the sensitivity plot

is shown: in the advanced mode, sensitivities are shown not only for the

moments (i.e. based on J(q)) but also for the model and LRE model (i.e.

based on J2 and JΓ), see Figure 10.

The advanced Monte Carlo diagnostics proceeds by analyzing the condi-

tion number of the Jacobians.

• First the histogram of the condition numbers across the Monte Carlo

sample is shown (Figure 11).

• Second the sensitivity of the condition number versus parameters is

analyzed applying the Monte Carlo filtering technique (Ratto, 2008):

the parameters that mostly drive the occurrence of the largest condition

numbers are searched. An example for the condition number of J(q)

is shown in Figure 12, where one can see that large values for ρR and

ρz are most responsible for the largest condition number, i.e. possibly

driving to weaker identification.
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Figure 10: Advanced Monte Carlo sensitivity plot for the An and Schorfheide
(2007).
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Figure 11: Histograms of condition numbers of Jacobians for the An and
Schorfheide (2007) model.
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Figure 12: Smirnov tests for the parameters most driving the occurrence of
the largest condition numbers in J(q) for An and Schorfheide (2007).
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Monte Carlo identification patterns are also displayed, by performing the

Singular Valued Decomposition proposed by Andrle (2010) for J(q) in each

Monte Carlo sample. This provides a sample of eigenvectors associated to the

smallest/largest singular values. The mean and 90% quantile of the distribu-

tion of such eigenvectors is plotted as shown in Figure 13. It is interesting to

note that, in such plot, the patterns seem to maintain some coherence and

consistency across the Monte Carlo sample, suggesting the for this model

the identification pattern is quite uniform over the prior space. Also, it is

interesting to note that, considering J(q), the mean parameters πA,rA and

γQ display clearly their identifiable effect through the first moments, while

using the Hessian (Figure 8), the ‘measure’ of such effect was less notable.

The final set of diagnostics for the advanced Monte Carlo option, point-

estimates are also shown for the parameter combinations associated to the

largest and smallest condition number of J(q). We show in Figures 14-15

the identification strength plots for those two special points, where we can

see that the identification characteristics are fairly similar to each other and

to the prior mean (Figure 5). The main difference distinguishing the ‘worst’

identifiable case in Figure 14 is that the identification strength of φ1 and φ2

drops significantly.
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Figure 13: Smirnov tests for the parameters most driving the occurrence of
the largest condition numbers for An and Schorfheide (2007).
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Figure 14: Identification strength for the parameter set associated to the
LARGEST condition number of J(q) for An and Schorfheide (2007).
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Figure 15: Identification strength for the parameter set associated to the
SMALLEST condition number of J(q) for An and Schorfheide (2007).
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7 Conclusions

We have described in detail the Identification Toolbox developed for analyz-

ing DSGE models under the DYNARe environment. The toolbox provides

a wide set of diagnostic tools to analyze the identification strength of the

model. Advanced options allow to inspect identification patterns, that help

the analyst in tracking the possibly weakest elements of the model parame-

ter set. Moreover, the Monte Carlo option allow to study how identification

features are changed across the entire prior space.
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