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From trees to forests



Random Forest

• Supervised learning

• Non-parametric

• Ensemble method
• Bagging

• Very flexible

• Classification and Regression

• No need to rescale nor center 
the data



Growing a random forest

• Let 𝑇 = # of trees in the forest, 𝑁 = # of observations in the training 
dataset, 𝐹 = # of features and 𝑆 the stop criterion.

• For each tree in 𝑇:
• Sample from the training dataset, with replacement, 𝑛 observations. Usually 
𝑛 = 𝑁.

• Grow the tree. For each split decision:
• Sample from the features available 𝑓 features. Usually 𝑓 = 𝐹. If you use all features, 

then it’s a bag of trees 

• Split the tree

• Check if it’s time to stop using 𝑆
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Growing trees

Bag of trees

Bootstrapping



Random Forest

Bootstrapping
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Growing a random forest



Prediction using a random forest

• Evaluate your new data in each one of the trees in the Random Forest 
model

• Classification Random Forests
• Take the statistical mode. Each tree would have 1 vote on deciding the 

classification.

• What if there’s a tie? Randomize between (among) them!!!!

• Regression Random Forests
• Take an average across the predictions from all trees



Growing a random forest

Predicting new data: X1=100, X2=5, X3=-10, X4=B

Mode = 0

Mean = 0.67



Out-of-bag evaluation

• You can validate the Random Forest as a whole averaging out the out-of-bag evaluations 
of each tree – no need to cross-validate

• With Random Forest (bagging), for each tree, only about 63% of the unique observations 
are sampled

• About 37% are not seen by that tree, so its performance can be evaluated on these data 
points
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Out-of-bag evaluation

Bootstrapping
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Feature Importance

• The number of times each variable is selected by all individual trees in 
the ensemble.



Feature Importance

• Gini Importance / Mean Decrease in Impurity (MDI)
• Gini Importance or Mean Decrease in Impurity (MDI) calculates each feature 

importance as the sum over the number of splits (across all tress) that include 
the feature, proportionally to the number of samples it splits.

• Out-of-bag permutation
• For each variable (feature) Xi in the dataset, keep all others (columns) 

unchanged and randomly permutate Xi (lines).

• Calculate the loss in each tree in the forest when predicting using the 
permutated variable

• Average the loss across trees to obtain the score 



Feature Importance – OOB permutation

OOB error e1 OOB error pi1

di1=e1-pi1

OOB error emOOB error pim

dim=em-pim

Resampled dataset 1 Resampled dataset m

OOB dataset 1 OOB dataset m
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permuted
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permuted

. . .

𝑣𝑖 =
𝑎𝑣𝑒(𝑑𝑖)

𝑠𝑡𝑑(𝑑𝑖)

Xi importance



Random Forest – performance evaluation

• Confusion matrix

• Precision

• Accuracy

• Sensitivity (recall)

• Specificity

• The Receiver Operating Characteristic (ROC) curve

• Area under the curve



Random Forest – performance evaluation



Random Forest – performance evaluation

AUC=0.74



Hands-on


