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1 Introduction

This short note documents the solution of linear approximation to policy func-
tion of nonlinear dynamic stochastic general equilibrium model in the IRIS
Toolobx 2006.12.02 by Jaromir Benes.

There are currently two options – one with unanticipated stochastic shocks
with zero mean expectations and perfect foresight policy function.

2 Problem Formulation

A linear approximation to nonlinear model can be written as

F1Etxt+1 + F2xt + F3εt + c = 0, (1)

where the vector x stores transition variables of the model, ε denotes vector of
stochastic shocks with Etεt+k = 0 for k > 0 unless perfect foresight solution is
assumed.

In this note we abstract from formulation of the problem that allows for
solution of non-stationary model and the determination of the constant or, in
the sequel, of trends in series. Thus we impose for convenience c = 0 and vector
x can be interpreted as deviation from a balanced growth path (BGP).

The vector x may be partitioned in the following form

xt+1 ≡
[

xP
t

xN
t+1

]
, (2)

where xP
t denotes predetermined and xN

t+1 non-predetermined transition vari-
ables.

Following Klein(2000), the policy function is solved using generalized Schur
decomposition. However, definition of auxilliary processes is somewhat different
than usual.

Let us define matrices Q, Z, A, B such that

QF1Z = A QF2Z = B, (3)
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where A, B are quasi-trianglular.
We define new auxilliary variables as follows

[
Z11 Z12

Z21 Z22

] [
St+1

Ut+1

]
≡

[
xP

t

xN
t+1

]
. (4)

Using (4), we can rewrite (1) as follows
[
A11 A12

0 A22

]
Et

[
St+1

Ut+1

]
+

[
B11 B12

0 B22

] [
St

Ut

]
+ Dεt = 0. (5)

Due to properly reordered variables and Schur decomposition the lower part
of (5) implies unstable dynamics.

2.1 Policy Function in Case of Unanticipated Shocks

2.1.1 Forward Solution of Unstable Part

Fist, we solve the unstable system forward and impose transversality condition.
Thus we have

A22EtUt+1 + B22Ut + D3εt = 0, (6)

implying that

Ut = lim
k→∞

(−B−1
22 A22)k

EtUt+k −
∞∑

k=0

(−B−1
22 A22)kB−1

22 D2Etεt+k. (7)

Either directly from transversality conditiosn derived from optimization prin-
ciples of the model or imposed directly – no-bubble solution is required, hence
we postulate

lim
k→∞

(−B−1
22 A22)k

EtUt+k = 0, (8)

implying that

Ut = −
∞∑

k=0

(−B−1
22 A22)kB−1

22 D2Etεt+k. (9)

Under our original assumption that Etεt+k = 0 for k > 0, the solution
specializes to

Ut = −B−1
22 D2εt = RUεt. (10)

2.1.2 Solution to Stable Path

Having solution to Ut we can solve upper part of (5), hence we solve

A11EtSt+1 + A12Ut+1 + B11St + B12Ut + D1εt = 0. (11)

Since Ut = RUεt, then Ut+1 = RUεt+1 and EtUt+1 = 0.
After plugging these realations into (11), we obtain

A11EtSt+1 = −B11St − B12R
Uεt + D1εt. (12)
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One has to realize that in general due to stochastic nature of the problem
EtSt+1 �= St+1, but we require solution in terms of St+1 and St.

Using the fact that for predetermined variables we have Etx
P
t − xP

t = 0, we
can use (4) and write

Et (Z11St+1 + Z12Ut+1) − (Z11St+1 + Z12Ut+1) = 0, (13)

implying that
EtSt+1 − St+1 = Z−1

11 Z12R
Uεt+1. (14)

Plugging (14) into (12) we obtain the solution

St+1 = −A−1
11 B11St − A−1

11 B12R
Uεt − A−1

11 D1εt − Z−1
11 Z12R

Uεt+1. (15)

Using (4) we know that

St+1 = Z−1
11 xP

t − Z−1
11 Z12Ut+1 = Z−1

11 xP
t − Z−1

11 Z12R
Uεt+1 (16)

Plugging (16) into solution (15) we obtain final stable solution

Z−1
11 xP

t = −A−1
11 B11Z

−1
11 xP

t−1 − A−1
11 D1εt +

(
A−1

11 B11Z
−1
11 Z12 − A−1

11 B12

)
RUεt.

(17)
We define a new auxilliary variable α as

αt ≡ St + Z−1
11 Z12Ut ≡ Z−1

11 xP
t (18)

and rewrite the stable transition equation (17) in terms of new variable α, i.e.

αt = −A−1
11 B11αt−1 − A−1

11 D1εt −
(
A−1

11 B11G + A−1
11 B12

)
RUεt, (19)

where G = −Z−1
11 Z12.

To solve for xN
t in terms of α, one must realize that xN

t = Z21St + Z22Ut.
We can thus rewrite

xN
t = Z21

[
Z−1

11 xP
t − Z−1

11 Z12Ut

]
+ Z22R

Uεt. (20)

hence
xN

t = Z21αt−1 +
[−Z21Z

−1
11 Z12 + Z22

]
Ut (21)

or
xN

t = Z21αt−1 + [Z21G + Z22] Ut (22)
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2.1.3 State Space System with No Anticipations

The state-space model for transition equations thus may be written as follows
[
xN

t

αt

]
=

[
T F

T A

]
αt−1 +

[
RF

RA

]
εt (23)

xP
t = Uαt. (24)

We define

T F ≡ Z21 (25)
T A ≡ −A−1

11 B11 (26)
RF ≡ (Z21G + Z22)RU (27)
RA ≡ [−A−1

11 D1 −
(
A−1

11 B11G + A−1
11 B12

)
RU

]
(28)

G ≡ −Z−1
11 Z12 (29)

RU ≡ −B−1
22 D2 (30)

U ≡ Z11 (31)
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2.2 Policy Function with Perfect Foresight

In case of full perfect foresight we solve the model (1) using assumption that

Etεt+k = εt+k, k > 0. (32)

There are multiple ways how to solve for this case. Even an algorithm
calculated under assumption of no foresight may be accomodated for inclusion
of perfect foresight by appropriate use of auxilliary variables. One can then
combine foresight with surprises.

For convenience we focus initially on pure foresight case, where there are no
surprises and all shocks are perfectly anticipated. Furthermore, it is assummed
that a steady-state of εt+k is zero. The solution used bellow cannot form an
infinite sum of geometric series, i.e. ’proper’ permament shock.

2.2.1 Forward Solution of Unstable Part

Starting from identical quasi-triangular decoupled system (5) we solve for the
lower unstable part.

Imposing no-bubble equlibrium the solution collapses into

Ut = −
∞∑

k=0

(−B−1
22 A22)kB−1

22 D2Etεt+k. (33)

For convenience let us define

J ≡ (−B−1
22 A22

)
RU ≡ (−B22D2), (34)

hence simplifying the notation using

Ut =
∞∑

k=0

JkRU
Etεt+k. (35)

It is clear that agents discount future shocks at the rate of J , which is
formed using matrices of unstable dynamics. Intuitively, the model operates on
unstable trajectory until the occurence of the shock anticipated. There are thus
two effects of anticipated shocks (i) announcement effect and (ii) implementation
effect.

For better intuition we shall use illustrative example, when agents anticipate
only two periods ahead shocks and then expect zero realisations of shocks, i.e.

Ut = RUεt + JRUεt+1 + J2RUεt+2. (36)

2.2.2 Solving Stable Part

Since we assume pure perfect foresight, it is clear that EtSt+1 = St+1 and we
can thus write the stable part of the system as

A11St+1 + A12Ut+1 + B11St + B12Ut + D1εt = 0. (37)
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Using the definition of α ≡ St + Z−1
11 Z12Ut we can rewrite the solution to

the stable part of system as

αt = − A−1
11 B11αt−1

+
(
Z−1

11 Z12 + A−1
11 A12

)
Ut+1

+
(
A−1

11 B11Z
−1
11 Z12 − A−1

11 B12

)
Ut

− A−1
11 D1εt.

(38)

It should be clear that we can write a recursion for determination of Ut as

Ut = JUt+1 + RUεt, (39)

and rewrite (38) as

αt = − A−1
11 B11αt−1

+
(
Z−1

11 Z12 + A−1
11 A12

)
Ut+1

+
(
A−1

11 B11Z
−1
11 Z12 − A−1

11 B12

)
(JUt+1 + RUεt)

− A−1
11 D1εt,

(40)

which is the final solution of the problem.
As in previous case we need to solve for xN

t in terms of α. The procedure is
identical, giving a solution

xN
t = Z21αt−1 +

[−Z21Z
−1
11 Z12 + Z22

]
Ut. (41)

2.2.3 Practical Implementation of the Solution

As in the previous case the solution for transition variables will take a state-
space form.

The solution can be written down in a form

[
xN

t

αt

]
= Tαt−1 + R




εt

εt+1

...
εt+N


 , (42)

where R is expanded matrix of period t impact of current and anticipated shocks.
The first left-block of R consists of stacked matrices [RF ; RA] capturing the effect
of current period shock.

To write down the matrix R it is convenient to define auxilliary matrices.
Thus, let

XA0 =
(
A−1

11 B11Z
−1
11 Z12 − A−1

11 B12

)
(43)

XA1 =
(
Z−1

11 Z12 + A−1
11 A12

)
(44)

XA = XA1 + XA0J (45)
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for the use with lower-part of the state-space and

XF = (Z21G + Z22) (46)

for the upper part.
The expanded matrix R can then be written as

R =
[
RF XF RU XF JRU XF J2RU . . . XF JN−1RU

RA XARU XAJRU XAJ2RU . . . XAJN−1RU

]
(47)
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