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Context

Machine Learning methods are very popular for prediction

Increasingly, there are ways of using machine learning for
(causal) statistical inference

“Pioneers:”
V. Chernozhukov, A. Belloni, S. Athey, C. Hansen, L.W. Mackey, V.
Syrgkanis, S. Wager, G. Imbens, . . .



Two Cultures. . .
[Breiman (2001), Statistical Modeling: The Two Cultures]

Breiman ponders the state of statistics and sees two cultures. . .

I One culture assumes to know the model that supposedly
generated the data, tests hypothesis. . .

I The other culture uses algorithmic models and treats the
data-generating process as uknown. . .

Breiman argues that committment to the first culture:
“has lead to irrelevant theory, questionable conclusions, and
has kept statisticians from working on a large range of
interesting current problems”.



“Just Do It” Approach

Machine-Learning/Computer Science community focuses on
solving problems. . .

Solve the problem first, worry about all the theory later

Would you rather be “roughly right” or “precisely wrong”?

What use is a linear stylized model with well-understood
properties if it fails to solve the problem at hand. . . ?

WORSE:
Classical inference gets often abused by un-disciplined
specification searches, and undisciplined data mining. . .
See Leamer (1979): Specification Searches



Machine Learning and [Causal] Inference

Trying not to mix the statistical and causal issues. . .

I Causality – why and what is the causal target parameters
I What is the motivation, what identifies the causal parameters of interest
I What (not) to condition on (front-door, back-door criteria,. . . )
I DAGs, Endogeneity, instruments, diff-in-diff, Neyman-Rubin’s model,

SUTVA, . . .
I Most oten untestable assumptions

I Statistics – how to estimate the identified target
parameters the ‘best way’

I Parametric or non-parametric, functional forms, . . .
I Model selection, variable selection, especially when p >> N
I Efficient estimation, asymptotic properties, Neyman orthogonality, . . .

Once the ‘causal identification’ is done, focus on the
statistical details. . . (causality 6= inference)



WARNING: Causality – Are you DAGing it?

DAG – Directed Acyclical Graph[s] (J. Pearl (2000))

(A) :)

(B) Should you control for Z?

No! Bad covariate, inducing bias due to ‘back-door criterion’.



ML Hopes & Issues

Hopes & Benefits:
I ML methods are very flexible, allow for nonlinearities, . . .
I ML algorithms can deal well with large of variables
I ML is focused on disciplined model selection

Issues & Opportunities:
I post-selection inference
I little-to-none formal results for popular ML algorithms

(asymptotics, efficiency, . . . )
I rapid progress on statistical inference with ML

For policy analysis both prediction and inference are
important. . .



‘Post-Selection’ Inference. . .

Classical statistical theory ignores model selection in
assessment of estimation accuracy. . .

Most statistical theory assumes the model selection is not
adaptive, not using the data at hand. . . (which makes learning
from data really hard!)

Not accounting for the selection process is bad datamining,
and the inference can be overly optimistic!

‘Replicability crisis’ in science. . .
Ioanidis (2005): “. . . most published research findings are false.”



‘Post-Selection’ Inference and Machine Learning. . .

ML is about GOOD data mining, a disciplined learning from
data. . .

Regularization – adaptive model selection

By knowing the process of model selection, it is easier to
account for it in the inference stage

It matters a lot what is the subject of inference – parameters,
or more aggreagate ‘effects’ (ATE, etc.)

In some (sub)-models, not all parameters exist!
What do you do?
(conditonal coverage?, simultaneous coverage, controlling for family-wise eror rate?)



Post-Selection Inference using Sample Splitting

Barnard (1974) [quoted in Wasserman et al (2018)]:

“. . . the idea of splitting a sample in two and then developing the
hypothesis on the basis of one part and testing it on the
remainder may perhaps be said to be one of the most seriously
neglected ideas in statistics”

Sample Splitting:

1. Split the IID sample S into SA and SB

2. Explore and select models using SA

3. Given the selected model, carry out inference using SB

No cheating! . . . dates back to Cox (1975), Stone (1974), etc.)



Model Selection using Sample Splitting
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Post-Selection Inference & Bootstrap
Efron (JASA, 2014)

Sometimes∗, the whole learning process can be bootstrapped!

Non-Parametric Bootsrap applied to the whole pipeline of
training the model (and parameters) and choosing the model
(hyper-parameters, e.g. λ, Cp, lag-length,. . . )

The bootstrap for ‘effects’ (ATE, means, etc.) is more feasible
than for the coefficients (e.g. with sparsity not all are always
defined. . . )

∗ conditions & terms apply ;)



Post-Selection Inference & Bootstrap
Bradley Efron (Estimation and Accuracy after Model Selection, JASA, July 1, 2014)



Post-LASSO Inference

An obvious elephant in the room. . .

Lasso is an adaptive model selection algorithm, aimed at
prediction accuracy (fit).

Intuitive BUT WRONG!:

1. Train the model using LASSO with CV-alidated λ [YES]
2. Estimate post-lasso regressions with selected variables to

de-bias the coefficient estimates [YES]
3. Carry out standard statistical inference [NO!]

What’s the way OUT?
Large literature with many special cases. . .
Lee, Sun, Sun, Taylor (AoS, 2016), Fithian, Sun, Taylor (2017), Taylor and Tibshirani (2015), Chaterjee and Lahiri

(JASA, 2011), . . .



Post-LASSO Inference

Actually, with LASSO, what is the inference about?

(A) Is the inference about the coefficients?
. . . the trouble is in some models not all coefs exist!

1. Examining everything, H∗0,j : β∗j = 0, conditional on all
variables

2. Inference based on a sub-model,M

(B) Or, is the inference about a statistic that is ALWAYS part of
the model?

I mean prediction, . . .
I average treatment effect (ATE), etc.
I . . .



Post-LASSO Inference

A few suggestions. . .
I Sample splitting. . .

I ‘In Defense of the Indefensible’
(Zhao, Shojaie, Witten, 2017) The naive two-step approach shouldn’t work... but ‘can’ yield confidence

intervals with asympt. correct coverage, as well as OK p-vals; and there’s reason for that. . .

I Various form of bootstrap
Chaterjee and Lahiri (2011) (resid. bstrap), Efron (2014)

I Exact Post-selection inference conditioned on the
selection event Lee, Sun, Sun, Taylor (2016)

When the variable is easily selected, the intervals are essentially the OLS intervals, but when a variable is

barely selected, things are bad and intervals very wide. . .

I Go Bayesian!



High-Dimensional Inference & Treatment Effects. . .

Different focus here – ONE parameter of interest, the rest are
nuisance params. . .



Non-Technical Introduction

Parametric Variable Selection & Post-Selection Inference
Given K variables, {X1,X2, . . . ,Xk}, select ‘optimally’ only R
components for a set Ω

yi = α1 × Treatmenti +
∑

r∈Ω

βr Xr (1)

Semi-Parametric Estimation & Variable Selection

yi = θ × Treatmenti + f (Xi), (2)

with f (.) uknown and X high-dimensional. . .

Non-Parametric



Orthogonal/Double Machine Learning
Chernozhukov et al. (2018)

Consider a problem

Y = θ × D + f (X ) + U, (3)

with E [U|X ,D] = 0.

Y – outcome variable of interest
D – policy or treatment variable
θ – target parameter of interest
X – high-dimensional covariates (confounders)
f (.) – unkown, complicated function

Confounders X important because

D = m(X ) + V , E [V |X ] = 0. (4)

How to use modern ML techniques to estimate f (.) and carry out inference
about low-dimensional θ?



Orthogonal/Double Machine Learning
Frisch-Waugh-Lovell style. . .

Rewrite the model in expectations, conditioned on X , i.e.

E [Y |X ] = θ × E [D|X ] + f (X ) + E [U|X ], (5)

and subtract from the origional problem

Y = θ × D + f (X ) + U, (6)

to get

Y − E [Y |X ]︸ ︷︷ ︸ = θ (D − E [D|X ])︸ ︷︷ ︸ + (U − E [U|X )︸ ︷︷ ︸

RY = θ RD + Û.

The estimate of θ is obtained from regressing RY on RD.



Orthogonal/Double Machine Learning

The regression of RY on RD is infeasible. . .

Use modern machine-learning tools (random forests, neural
nets, boosting, Lasso, . . . ) to learn mappings functions h(.) and
m(.)

I R̂Y ≡ (Y − E [Y |X ]) ≡ Y − ĥ(X )

I R̂D ≡ (Y − E [D|X ]) ≡ Y − m̂(X )

Can we estimate θ as

θ̂ = (D̂′DR̂D)−1R̂′DR̂Y ? (7)

The issue is that ĥ(.) and m̂(.) were obtained using the whole
sample, risking over-fitting and complicating inference. . .



Sample Splitting & Cross-Fitting

Sample splitting is one of the most understated methods in
statistics. . .

1. Split the sample in two parts, S1 and S2. . .
2. Use S1 to train and select the models
3. Use S2 to carry out inference using the models

Sample splitting decreases sample size and thus lowers
power.

Cross-fitting: Do multiple splits and average the estimates. . .

Of course, related to cross-validation. . .



Orthogonal/Double Machine Learning + Cross-Fitting
Chernozhukov et al. (2018)

Given the model

Y = θ × D + f (X ) + U, (8)

1. Randomly split the sample in two parts, S1 and S2.

2. Using the sample S1, estimate E [Y |X ] = ĥ(X ) and E [D|X ] = m̂(X ).

3. Using the sample S2 compute projection errors R̂Y = Y − ĥ(X ) and
R̂D = D − m̂(X ).

4. Compute the estimate θ̂1 by regressing R̂Y on R̂D .

5. Flip the roles of samples S1 and S2, to estimate θ̂2.

6. Estimate θ̂ = 1
2 θ̂1 + 1

2 θ̂2. Now,
√

N(θ̂ − θ) ∼ N(0,Σ)



Orthogonal ML – Monte Carlo Simulation

Inspired by the blog by Gabriel Vasconselos. . .

Data-Generating Process to test:

yi = Diθ + cos2(x ′i γ) + ui (9)
Di = sin(x ′i γ) + cos(x ′i γ) + vi (10)

with u, v ∼ N(0,1), θ = 0.5 and γk = 1/k .

Comparing three estimators:
I OLS
I ‘Naive’ ML, see Chernozhukov et al (2016) for details
I Double-ML with cross-fitting, using Random Forests for regression

Note: for the OLS estimation the “safer” benchmark is y ∼ d + x



Orthogonal ML – Monte Carlo Simulation
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Orthogonal ML – Examples



Orthogonal ML – Why Does It Work?

Magic. . . ;)

A few of key ingredients (intuitively):
I The implied moment conditions (and the influence function) are not

“too” sensitive to “small” mistakes in estimating nuisance functions h(.)
and m(.)

I Not every moment condition necessarily satisfies this ‘Neyman
Orthogonality’

I Sample splitting further helps to lower assumptions needed about
smoothness of h(.) and m(.)

I The FWL “residualization” is essentially the same as in standard
semi-parametric literature. BUT the inference works for quite different
reasons with ML plugin estimators, which have more complex
properties. . .



Double ML – General version



Double-Selection Approach to Lasso (1)
Belloni, Chernozhukov, and Hansen (2014)

Consider having sample size N for

Yi = θ × Di + X ′i α + εi (11)

where

Yi – outcome
θ – [causal] coefficient of interest
Di – treatment, exogenous variable
Xi – “large” vector of covariates (confounders), P >> N
α – ‘nuisance’ parameters

With P >> N, we must work on variable selection, standard
OLS won’t do it...

What pops into your mind? LASSO!



Double-Selection Approach to Lasso (2)

Bad Approach:
Running standard Lasso, while forcing D to be always selected,
will work poorely.

I Lasso does not necessarilly always selects all the ‘correct’
variables

I Lasso targets prediction and will omit variables that are
highly correlated with D, as they are not needed for
prediction. . .

I This may result into severe omitted variables bias.

I In general, bootstrap won’t help. . .

GOOD Approach: Double-Selection Lasso



Double-Selection Approach to Lasso (3)

GOOD Approach: Double-Selection Lasso

1. Run first-stage selection using Lasso:

Yi = X ′i β1 + ν1,i (12)

2. Run second-stage selection using Lasso:

Di = X ′i β2 + ν2,i (13)

3. Run OLS with the union of variables selected in Stage 1
and Stage 2: X̃i ∈ S|(β1,i 6= 0 or β2,i 6= 0):

Yi = αDi + X̃ ′i θ + ε (14)



Double-Selection Lasso: Simulation Experiment
[Follows Chernozhukov et al. 2016]

Yi = Diθ + X ′
i α1 + ui (15)

Di = X ′
i α2 + vi (16)

X is [Nobs × k ]

The model is “aproximately sparse”, i.e.

α1,j = 1/j2, α2 = 0.7α1 j = 1, . . . , k

The covariates are correlated and Normally distributed

x ∼ N(0,Σ),Σkj = (1/2)|j−k |



Double-Selection Lasso: Simulation Experiment
(p >> N)
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Double-Selection Lasso: Simulation Experiment
(p < N)

When p < N the OLS is still feasible.

Of course, as degrees of freedom decline, the variance of the
estimator of θ increases dramatically. . .

Variable/model selection using post double-selection is vastly
superior. . .



Double-Selection Lasso: Simulation Experiment
(p < N)
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Double-Selection Lasso: Instrumental Variables (IV)
Chernozhukov, Hansen, and Spindler (2015)

Consider the following linear IV model:

Yi = αDi + X ′i β + εi , (17)
Di = X ′i γ + Z ′i δ + ui , (18)
Zi = ΠXi + ζi (19)

where
Yi – outcome for i-th observation
Di – endogenous variable of interest
Xi – potentially high-dim. vector of covariantes
Zi – potentially high-dim. vector of instruments
α – parameter of interest

Assume the dimension of full parameter vector is much larger than estimate
with available sample size. . .



Double-Selection Lasso: Instrumental Variables (IV)

Using simple substitutions, the system

Yi = αDi + X ′i β + εi , (20)
Di = X ′i γ + Z ′i δ + ui , (21)
Zi = ΠXi + ζi (22)

can be expressed as a reduced form

Yi = X ′i θ + rY
i , (23)

Di = X ′i ψ + rD
i , (24)

which depends only on Xi .

Post-lasso double selection strategy that ‘immunizes’
estimation from selection errors exists. . .



Double-Selection Lasso: Instrumental Variables (IV)
Algorithm:

1. Do post-lasso regression of Di on Xi ,Zi to get γ̂ and δ̂.

2. Do post-lasso regression of Yi on Xi to get θ̂

3. Define D̂i := X ′i γ̂ + Z ′i δ̂ and run post-lasso of D̂i on Xi ,
getting ψ̂

4. Define

r̂Y
i := Yi − X ′i θ̂, (25)

r̂D
i := Di − X ′i ψ̂, (26)
υ̂D

i := (X ′i γ̂ + Z ′i δ̂)− X ′i ψ̂. (27)

5. Estimate α̂ by standard IV regression of r̂Y
i on r̂D

i , using υ̂i
as an instrument. Standard inference applies. . .



Double-Selection Lasso: Instrumental Variables (IV)

Why this works?

It works because the implied moment condition for the
last-stage IV problem

E[(r̂Y
i − r̂D

i α)υ̂] = 0 (28)

is not overly sensitive (‘immunized‘) against lasso selection
mistakes, and imperfect estimation of γ, δ, ψ, β.

Definition of υ̂D
i := (X ′i γ̂ + Z ′i δ̂)− X ′i ψ̂ is very important.

Chernozhukov, Hansen, and Spindler (2015) illustrate that
moment condition

E[(r̂Y
i − r̂D

i α)D̂i ] ≡ E[(r̂Y
i − r̂D

i α)(X ′i γ̂ + Z ′i δ̂)] = 0 (29)

is not ‘robust’ to selection errors. . .



Double-Selection Lasso: Simulation Experiment



Digression: Neyman-Rubin Potential-Outcomes Model

Let’s consider a binary treatment D ∈ {0,1}.

Fundamental Problem of Causal Inference:

We never observe the effects of treatment and non-treatment
for the given individual (or unit). . .

Potential Outcomes:

I yi(0) – outcome if unit i not treated, D = 0
I yi(1) – outcome if unit i treated, D = 1

We observe either yi(0) or yi(1) but never both. We observe
one outcome, the other being counter-factual.



Digression: Neyman-Rubin Potential-Outcomes Model

Treatment effect: τ = yi(1)− yi(0)

It is impossible to learn the treatment effect using the observed
data without additional assumptions. . .

The assumptions differ for:

(a) Randomized controlled trials (RCT)
(treatment D is random, independent of outcome and control
variables. . . )

(b) Observational studies
(treatment D may depend on control variables, X . . . )



Digression: Neyman-Rubin Potential-Outcomes Model

Unconfoundedness Assumption
Treatment assignment uncondounded when treatment is
independent of potential oucomes, after conditioning on
controls (confounders)

Intuitively, one searches for treated unit j that’s “as similar as
possible” to a non-treated unit i and compare their outcomes. . .

Conditional Average Treatment Effect (CATE)

CATE(x) = τ(x) = E [Y |D = 1,X = x ]− E [Y |D = 0,X = x ]

= E [Y (1)|D = 1,X = x ]− E [Y (0)|D = 0,X = x ]

= E [Y (1)|X = x ]− E [Y (0)|X = x ] (30)

Average Treatment Effect (ATE)

ATE = E [CATE(x)] (31)



ML usage...
Let p = pr(Di = 1) be the marginal treatment probability, and let

e(x) = pr(Di = 1|Xi = x) (32)

be the propensity score (conditional treatment prob.)

One option for using ML is to estimate flexible predictive
models for the propensity score. . . [low-hanging fruit] for
propensity-score matching



Causal Forests
Stefan Wager and Susan Athey (2018)

Using random forest to estimate heterogeneous treatment
effects. . .

τ(x) = E [yi(1)− yi(0)|Xi = x ]. (33)

The point is to allocate “similar as possible” units, treated and
non-treated, to the trees’ leafs and read-off the treatment effect
within the leaf. . .

Trees are very good at creating sets of ‘similar’ units, with the
similarity being defined with respect to outcome or probability of
treatment. . .

Causal trees make sure each leaf has at least k observations
from both treated and non-treated groups



Causal Forests
Stefan Wager and Susan Athey (2018)

Having observed data (yi , xi ,Di), we want to estimate

τ(x) = E [yi(1)− yi(0)|Xi = x ]. (34)

Given a tree with leaves Lk , k = 1, . . . ,K we estimate CATE(x)
as difference of average outcome of treated and non-treated
units within the leaf where the unit with control features x is a
member of.

τ̂(x) = avg(yi){i:Di =1,xi∈L} − avg(yi){i:Di =0,xi∈L} (35)



Causal Forests

Random forests can be viewed as ‘adaptive nearest neighbors’

What is the difference to k-NN then?

Trees and forests do not measure ‘closeness’ just based on X ,
but mainly by their effects on outcome (prob. of treatment,
say. . . ). Closeness is defined as being member of the same
leaf of a decision tree. . .

This allows the implicit functional form defining closeness to
reflecting the strength of the information (signal)

TODO: Generalized Random Forests and ”weigted adaptive
NN”



Causal Forests

Honest Trees
In order to get valid inference, Wager and Athey (2018) require
trees to be ‘honest’

I Honesty is related to over-fitting.

I Honesty means that the treatment effect is computed using
data yi that were NOT used for training the model. . .

I Honesty can be achived by sample splitting
(sample splitting again!)



Causal Forests
Stefan Wager and Susan Athey (2018)

Athey and Wager propose two types of causal trees

I Double-Sample Trees
1. Split sample in halves, SA and SB .
2. Use sample SA to train the splits for trees
3. Use sample SB for within-leaf estimation, given the tree structure

I Propensity Trees (Also Wang et al. 2015)
1. Train a classification tree, with Xi predicting treatment, Di

2. Each leaf must have at least k observations on treated and
non-treated units, each

3. Estimate τ(x) within the leaf containing x

Propensity trees training uses no information on outcome, Yi .



Causal Forests
Stefan Wager and Susan Athey (2018)

Causal forests use a splitting criterion that maximizes the
variance of treatment effects, τ̂(x).

Wager and Athey (2018) motivate this by an analogy of
regression trees, where splits are done to minimize the
mean-square error. . .

Finding the split that minimizes the mean-square error amounts
to maximizing the variance of the prediction. . .

∑

i∈L

(µ̂(xi)− Yi)
2 =

∑

i∈L

(Y obs
i )2 −

∑

i∈L

µ̂(xi)
2



Causal Forests and Trees



Implementation:

Implementation in R, Python, or Matlab straightforward. . .

Ahrens et al.(2018) implement rich lasso toolbox in Stata:
I post double-selection lasso (pdslasso)
I elastic net, ridge, lasso, cross-validation, . . .
I . . .
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Thank you for your patience. . .


