Disclaimer #1:

The views expressed herein are those of the authors and should not be attributed to the International Monetary Fund, its Executive Board, or its management.
Model with high relative representational capacity may overfit.

When they overfit and learn more about exceptions that ‘true’ pattern, they **generalize poorly** to new datasets

**Regularization** is “any modification we make to a learning algorithm that is intended to reduce its generalization error” (Goodfellow et al. 2017)

Often, prior belief about a simpler sub-model is put to test with the data...
Regularization

A common form of regularization in parametric models is penalizing coefficients deviation towards zero...

\[
\min_{\beta} \sum_{i=1}^{N} (y - (\alpha_0 + x'i\beta))^2 + \lambda \times \text{Penalty}(\beta - 0)
\]

Three frequent specifications are:

- **Ridge Regression**: Penalty = \(\sum_i \beta_i^2\)
- **Lasso**: Penalty = \(\sum_i |\beta_i|\)
- **Elastic Net**: Penalty = \((1 - \alpha) \sum_i \beta_i^2 + \alpha \sum_i |\beta_i|\)

!! Variables in x must be NORMALIZED !!
Shrinkage
Ridge due to Hoerl and Kennard (1970)

Ridge/Weight Decay/Tikhonov regularization: $\sum_i \beta_i^2$

- Shrinks coefficients towards the prior (zero)
- Coefficients rarely set to hard zero, the penalty is *smooth*
- Numerically stabilizes ill-conditioned models and those where we have more features than data points, $N_{\text{obs}} \leq p$

$$\hat{\beta} = (X'X + \lambda I)^{-1}X'Y$$

- If only one $\lambda$, variables must be normalized, so $\beta_k$ are comparable...
**Lasso**

(Least abs. shrinkage and selection operator): \( \sum_i |\beta_i| \)

- Can shrink some coefficients to **hard zero**
- Performs a form of ‘continous variable selection’, promotes **sparsity**
- If only one \( \lambda \), variables must be normalized, so \( \beta_k \) are comparable...
LASSO vs. Ridge

With **lasso** the combination of coefficients consistent with a constant penalty, e.g. \(|\beta_1| + |\beta_2| = \text{const}\), has **corners**, allowing for corner solutions, combined with elliptical contours of the loss function...

![Diagram of LASSO and Ridge regression](image)

- Lasso: \(\hat{\beta} = \text{sign}(\hat{\beta}) (|\hat{\beta}| - \lambda) + \lambda \hat{\beta}_{\text{M}}\)
- Ridge: \(\hat{\beta} = \frac{\hat{\beta}}{1 + \lambda}\)

**TABLE 3.4.** Estimators of \(\beta_j\) in the case of orthonormal columns of \(X\). \(M\) and \(\lambda\) are constants chosen by the corresponding techniques; \(\text{sign}\) denotes the sign of its argument (±1), and \(x^+\) denotes “positive part” of \(x\). Below the table, estimators are shown by broken red lines. The \(45^\circ\) line in gray shows the unrestricted estimate for reference.

<table>
<thead>
<tr>
<th>Estimator</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best subset</td>
<td>(\hat{\beta}_j \cdot I(</td>
</tr>
<tr>
<td>Ridge</td>
<td>(\frac{\hat{\beta}_j}{1 + \lambda})</td>
</tr>
<tr>
<td>Lasso</td>
<td>(\text{sign}(\hat{\beta}_j)(</td>
</tr>
</tbody>
</table>

**FIGURE 3.11.** Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions \(|\beta_1| + |\beta_2| \leq t\) and \(\beta_1^2 + \beta_2^2 \leq t^2\), respectively, while the red ellipses are the contours of the least squares error function.

With many variables, \(p > 2\) the relevant penalty space has many corners, flat edges, and faces – many opportunities for params to be zero!

---

Hastie, Tibshirani, and Freedman (2005)
Orthogonal Regressors Case – Intuition

In the case of orthogonal components in $X$ ridge and lasso elastic net have explicit solution that helps with intuition.

**Ridge:** – proportional shrinkage

$$\hat{\beta}_j = \frac{\beta_{ols,j}}{(1 + \lambda)}$$  \hspace{1cm} (1)

**Lasso:** – soft thresholding

$$\hat{\beta}_j = \text{sign}(\beta_{ols,j})(|\beta_{ols,j}| - \lambda)_+$$ \hspace{1cm} (2)

Ridge Regression  \hspace{2cm} Lasso

$$(0,0)$$  \hspace{2cm} $$(0,0)$$
Ridge, Lasso, and Elastic Net

Ridge Regression:

$$\min_{\beta_0, \beta} \left\{ \sum_{i=1}^{N} (y_i - (\beta_0 + x_i' \beta))^2 + \lambda \frac{1}{2} ||\beta||_2 \right\}$$  \hspace{1cm} (3)$$

Lasso:

$$\min_{\beta_0, \beta} \left\{ \sum_{i=1}^{N} (y_i - (\beta_0 + x_i' \beta))^2 + \lambda ||\beta||_1 \right\}$$  \hspace{1cm} (4)$$

Elastic Net:

$$\min_{\beta_0, \beta} \left\{ \sum_{i=1}^{N} (y_i - (\beta_0 + x_i' \beta))^2 + \lambda \left[ \frac{1}{2} (1 - \alpha) ||\beta||_2 + \alpha ||\beta||_1 \right] \right\}$$  \hspace{1cm} (5)$$
In Bayesian view, the prior information about the model parameters, \( p(\beta) \), is getting updated by observing the data, \( D = (Y, X) \), via its likelihood, \( p(D|\beta) \):

\[
p(\beta|D) = \frac{P(D|\beta) \times p(\beta)}{p(D)} \propto P(D|\beta) \times p(\beta)
\]

\[
\log p(\beta|D) \propto \log P(D|\beta) + \log p(\beta)
\]

Intuitively, for point ‘maximum a-posterior’ (MAP) estimate, it is a ‘penalized optimization’
Bayesian View – Intuition

Thus, a **ridge** regression

\[
\arg\max_{\beta, \beta_0} \left\{ \sum_{i=1}^{N} (y_i - (\beta_0 + x_i' \beta))^2 + \lambda \sum_{k=1}^{p} (\beta_k - 0)^2 \right\}
\]

corresponds to a model with **Gaussian prior** belief:

\[\beta_k \sim N(0, \sigma_k), \quad N_{pdf}(\beta_k, 0, \sigma) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(\beta_k - 0)^2}{2\sigma^2}},\]

and thus

\[
\arg\max_{\beta} \sum_{i=1}^{N} \log N_{pdf}(y_i; (\beta_0 + x_i' \beta), \sigma_e) + \sum_{k=1}^{p} \log N_{pdf}(\beta_k; 0, \sigma)
\]

**LASSO** corresponds to a **Laplace prior**, \[\beta \sim \frac{\lambda}{2\sigma} e^{-\frac{\lambda}{\sigma}|\beta_k|}.\]
Ridge vs. Lasso – Priors and Equidistant Contours

![Graph showing the comparison between Ridge and Lasso with Laplace and Normal priors, highlighting the equidistant contours for each.]
Elastic Net (1)

Elastic Net is a combination of Ridge and Lasso

“like a stretchable fishing net that retains ‘all the big fish’ “
Zou and Hastie (2005)

\[
\min_{\beta_0, \beta} \left\{ \sum_{i=1}^{N} (y_i - (\beta_0 + x_i'\beta))^2 + \lambda \left[ \frac{1}{2} (1 - \alpha)\|\beta\|_2 + \alpha \|\beta\|_1 \right] \right\}
\]

ElasticNet introduces two hyperparameters, \( \lambda \) and \( \alpha \).
Elastic Net (2)

ElasticNet attempts to take the best $L1$ and $L2$ worlds.

Issues it solves:

- For cases where $p \geq N_{\text{obs}}$, ridge works but lasso saturates at $N_{\text{obs}}$

- Lasso handles poorly very correlated variables, picks arbitrarily one and eliminates the others, while ridge attributes the same weight to all, ElasticNet ‘groups’ the correlated variables

- For common situations with $N_{\text{obs}} >> p$, and highly correlated predictors, ridge dominates pure lasso...

- For $\lambda > 0$ and $\alpha < 1$ ElasticNet is strictly convex..., with a unique solution
What Value for $\lambda$?

The **hyperparameter** $\lambda$ can be estimated using a **hold-out** set (validation or cross-validation)

![Graph showing the relationship between hyper parameter value and loss function value](image-url)
It’s worth looking at evolution of $\beta$ as $\lambda$ changes...

Why log $\lambda$? It is common and useful to create hyper-parameter grids in logs...
Prior Restriction on Coefficients

It is important to understand the principles of prior information about coefficients.

Lasso and Ridge should not be applied mindlessly...

In economics, the priors may be about shrinking to other values than zero and economic theory should be the guide.

Example: **Bayesian VARs**
- Coefs shrunk to 0 or 1 (unit roots)
- For coefficients on higher lags, $\lambda$ increases
- ...
Extensions

**Group Penalties/Priors**

- $L(\beta) = MSE(\beta) + \sum_{g=1}^{G} \lambda_g \left\{ \sum_{j \in g} \text{Penalty}(\beta_j) \right\}$
- Bayesian VARs, …
- Regression with dummy-coded categorical inputs
- …

**Fused Penalties**

- For problems with features having natural order, sometimes we prefer neighboring coefficients to be similar. …
- Penalty = $\lambda_1 \sum_{k=1}^{p} ||\beta_i|| + \lambda_2 \sum_{k=1}^{p-1} ||\beta_{i+1} - \beta_i||$
- DNA, time series, …

Many other extensions: hierarchical adaptive lasso, spike-and-slab lasso, …
More on LASSO...
After Lasso, the estimated coefficient reflect the bias due to the “tresholding”

Post-LASSO:

1. Estimate some version of LASSO
2. Apply OLS to the selected model to remove the bias

Sometimes, people forget to do post-Lasso.

Don’t be that person ;)

post-LASSO...
“Tune-free” Lasso...?

Under certain conditions (Bickel, Ritov, Tsybakov, Ann. of Stat. 200) the rate-optimal choice of penalty level is

$$\lambda = \sigma 2 \sqrt{2 \log(pn)/n}.$$  

Now... $\sigma$, variance of the error, is of course not known...

If need be, must be estimating iteratively, not a problem
The $\sqrt{\text{LASSO}}$
Belloni, Chernozhukov, Wang, Biometrika 2010

With a clever modification of the Lasso,

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} [y_i - x_i' \beta]^2 + \lambda \| \beta \|_1}$$

they show that the rate-optimal penalty level is **independent** of $\sigma$.

$$\lambda = \sqrt{2 \log(pn)/n}$$

The solution method is different from “standard” Lasso approaches but this is as “tuning-free” Lasso as it gets...
The problem is, for given $\lambda$

$$RSS(\lambda) = (y - X\beta)'(y - X\beta) + \lambda \beta'\beta$$  \hspace{1cm} (8)

with the solution

$$\hat{\beta}_r = (X'X - \lambda I)^{-1}X'y.$$  \hspace{1cm} (9)

The regularization by the diagonal matrix $\lambda I$ ameliorates the collinearity and invertibility of the least-square problem...
How can you solve LASSO? Many ways...

**Coordinate Descent** very simple to implement & intuitive

For $f(x) = g(x) + \sum_{i=1}^{n} h_i(x_i)$ with $g(x)$ convex and differentiable and each $h_i(.)$ convex, coordinate descent can find a global minimizer...

Start with $x^{(0)}$ and for $k = 1, 2, \ldots$ repeat

$$
x_1^{(k)} = \arg\min_{x_1} f(x_1, x_2^{(k-1)}, x_3^{(k-1)}, \ldots, x_n^{(k-1)})
$$

$$
x_2^{(k)} = \arg\min_{x_2} f(x_1^{(k)}, x_2, x_3^{(k-1)}, \ldots, x_n^{(k-1)})
$$

$$
\ldots
$$

$$
x_n^{(k)} = \arg\min_{x_n} f(x_1^{(k)}, x_2^{(k)}, x_3^{(k-1)}, \ldots, x_n)
$$

And, crucially, there is a simple closed-form solution for each coordinate optimization problem for the LASSO...
Let’s have the problem of LASSO:

$$\min_{\beta} \frac{1}{2N} \sum_{i}^{N} (y_i - \sum_{j=1}^{p} x_{i,j}\beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$  \hspace{1cm} (14)

1. Compute ‘partial residuals’, $r_{ij} = y_i - \sum_{k \neq j} x_{ik}\beta_k$

2. Compute the LS coefficient $\beta^* = \frac{1}{N} \sum_{i=1}^{N} x_{ij}r_{ij}$

3. Use soft-thresholding to update $\beta_j$

$$\beta_j = S(\beta_j^*, \lambda) = (\beta_j^*)(|\beta_j^*| - \lambda)_+$$
After the model search and selection (e.g. choosing) you **CAN NOT** just use the p-values and such...

The whole model search process needs to be always, always, always taken into account.

For **explicit** and admitted model search the literature is now finding ways to do inference

One of the ways to account for model selection is to **bootstrap** the whole selection & estimation process... (Efron, 2013, Estimation and Accuracy after Model Selection). Or sample splitting, double-selection lasso, etc.

Reading: Chernozhukov, Hansen, Spindler (2015), Tibshirani et al. (2016, JASA), ...
Spike and Slab Model

Originally proposed by Mitchell and Beuchamp, 1988

In Bayesian variable selection, the requirement for sparsity is to set the loading coef as $\gamma_j = 1$ if ‘relevant/useful’ and $\gamma_j = 0$ otherwise.

For small problems, the posterior prob. of inclusion can be computed in an exhaustive ways... but there are $2^p$ models!

Spike-and-slab is based on a hierarchical prior for coefficients, $\beta$:

$$p(\beta_j; \sigma, \gamma_j) = \begin{cases} 0 & \text{for } \gamma_j = 0 \\ N(\beta_j; 0, \sigma^2 \sigma_\beta^2) & \text{for } \gamma_j = 1 \end{cases}$$

and

$$p(\gamma) = \prod_{k=1}^p \pi_0^{\gamma_k} (1 - \pi_0)^{1 - \gamma_k} = \pi_0^{\sum_k \gamma_k} (1 - \pi_0)^{p - \sum_k \gamma_k} \quad (15)$$

so that the prior ‘penalty’ is

$$\log p(\gamma|\pi_0) = -\lambda \times \sum_{k=1} \gamma_k + \text{const}, \gamma \in \{0, 1\}$$

and $\pi_0$ is prior expected fraction of large $\beta_j$s and $\lambda \equiv \log \frac{1 - \pi_0}{\pi_0}$. 
For Enthusiasts...

Thank you for your patience...