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Regularization – A Refresher

Model with high relative representational capacity may
overfit. . .

When they overfit and learn more about exceptions that ‘true’
pattern, they generalize poorly to new datasets

Regularization is “any modification we make to a learning
algorithm that is intended to reduce its generalization error”
(Goodfelow et al. 2017)

Often, prior belief about a simpler sub-model is put to test with
the data. . .



Regularization

A common form of regularization in parametric models is
penalizing coefficients deviation towards zero. . .

min
β

N∑
i=1

(y − (α0 + x ′β))2 + λ× Penalty(β − 0)

Three frequent specifications are:

I Ridge Regression: Penalty =
∑

i β
2
i

I Lasso: Penalty =
∑

i |βi |

I Elastic Net: Penalty = (1− α)∑i β
2
i + α

∑
i |βi |

!! Variables in x must be NORMALIZED !!



Shrinkage
Ridge due to Hoerl and Kennard (1970)

Ridge/Weight Decay/Tikhonov regularization:
∑

i β
2
i

I Shrinks coefficients towards the prior (zero)

I Coefficients rarely set to hard zero, the penalty is smooth

I Numerically stabilizes ill-conditioned models and those
where we have more features than data points, Nobs ≤ p

I β̂ = (X′X + λI)−1X′Y

I If only one λ, vairables must be normalized, so βk are
comparable. . .



Sparsity
LASSO due to Robert Tibshirani (1996).

Lasso
(Least abs. shrinkage and selection operator):

∑
i |βi |

I Can shrink some coefficents to hard zero

I Performs a form of ‘continous variable selection’, promotes
sparsity

I If only one λ, vairables must be normalized, so βk are
comparable. . .



LASSO vs. Ridge

With lasso the combination of coefficients consistent with a constant penalty,
e.g. |β1|+ |β2| = const, has corners, allowing for corner solutions, combined
with elliptical contours of the loss function. . .

3.4 Shrinkage Methods 71

TABLE 3.4. Estimators of βj in the case of orthonormal columns of X.M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
argument (±1), and x+ denotes “positive part” of x. Below the table, estimators
are shown by broken red lines. The 45◦ line in gray shows the unrestricted estimate
for reference.

Estimator Formula

Best subset (size M) β̂j · I(|β̂j | ≥ |β̂(M)|)
Ridge β̂j/(1 + λ)

Lasso sign(β̂j)(|β̂j | − λ)+

(0,0) (0,0) (0,0)

|β̂(M)|

λ

Best Subset Ridge Lasso

β^ β^2
. .β

1

β 2

β1
β

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.

|β1| + |β2| = const β2
1 + β2

2 = const

Hastie, Tibshirani, and Freedman (2005)

With many variables, p > 2 the relevant penalty space has many corners, flat
edges, and faces – many opportunities for params to be zero!



Orthogonal Regressors Case – Intuition

In the case of orthogonal components in X ridge and lasso elastic net have
explicit solution that helps with intuition.

Ridge: – proportional shrinkage

β̂j =
βols,j

(1 + λ)
(1)

Lasso: – soft thresholding

β̂j = sign(βols,j)(|βols,j | − λ)+ (2)
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TABLE 3.4. Estimators of βj in the case of orthonormal columns of X.M and λ
are constants chosen by the corresponding techniques; sign denotes the sign of its
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for reference.
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |β1| + |β2| ≤ t and β2

1 + β2
2 ≤ t2, respectively,

while the red ellipses are the contours of the least squares error function.



Ridge, Lasso, and Elastic Net

Ridge Regression:

minβ0,β

{
N∑

i=1

(yi − (β0 + x ′i β))
2 + λ

1
2
||β||2

}
(3)

Lasso:

minβ0,β

{
N∑

i=1

(yi − (β0 + x ′i β))
2 + λ||β||1

}
(4)

Elastic Net:

minβ0,β

{
N∑

i=1

(yi − (β0 + x ′i β))
2 + λ

[
1
2
(1− α)||β||2 + α||β||1

]}
(5)



Bayesian View – Intuition

In Bayesian view, the prior information about the model
parameters, p(β), is getting updated by observing the data,
D = (Y ,X ), via its likelihood, p(D|β):

p(β|D) =
P(D|β)× p(β)

p(D)

∝ P(D|β)× p(β)

log p(β|D) ∝ log P(D|β) + log p(β)

Intuitively, for point ‘maximum a-posterior’ (MAP) estimate, it is
a ‘penalized optimization’



Bayesian View – Intuition

Thus, a ridge regression

arg max
β,β0

{
N∑

i=1

(yi − (β0 + x ′i β))
2 + λ

p∑
k=1

(βk − 0)2

}

corresponds to a model with Gaussian prior belief:

βk ∼ N(0, σk ), Npdf (βk ,0, σ) = 1√
2πσ2 e−

(βk−0)2

2σ2 ,

and thus

argmaxβ
N∑

i=1

log Npdf (yi ; (β0 + x ′i β), σe) +

p∑
k=1

log Npdf (βk ;0, σ)

LASSO corresponds to a Laplace prior, β ∼ λ
2σe−

λ
σ
|βk |.



Ridge vs. Lasso – Priors and Equidistant Contours
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Elastic Net (1)

Elastic Net is a combination of Ridge and Lasso

“like a stretchable fishing net that retains ‘all the big fish’ “
Zou and Hastie (2005)

minβ0,β

{
N∑

i=1

(yi − (β0 + x ′i β))
2 + λ

[
1
2
(1− α)||β||2 + α||β||1

]}

ElasticNet introduces two hyperparameters, λ and α.
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Elastic Net (2)

ElasticNet attempts to take the best L1 and L2 worlds.

Issues it solves:
I For cases where p ≥ Nobs, ridge works but lasso saturates at Nobs

I Lasso handles poorly very correlated variables, picks arbitrarily one and
eliminates the others, while ridge attributes the same weight to all,
ElasticNet ‘groups’ the correlated variables

I For common situations with Nobs >> p, and highly correlated
predictors, ridge dominates pure lasso. . .

I For λ > 0 and α < 1 ElasticNet is strictly convex. . . , with a unique
solution



What Value for λ?

The hyperparameter λ can be estimated using a hold-out set
(validation or cross-validation)
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Regularization Path

It’s worth looking at evolution of β as λ changes. . .
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Why logλ? It is common and useful to create hyper-parameter grids in logs. . .



Prior Restriction on Coefficients

It is important to understand the principles of prior information
about coefficients.

Lasso and Ridge should not be applied mindlessly. . .

In economics, the priors may be about shrinking to other values
than zero and economic theory should be the guide

Example: Bayesian VARs
I Coefs shrunk to 0 or 1 (unit roots)
I For coefficients on higher lags, λ increases
I . . .



Extensions

Group Penalties/Priors
I L(β) = MSE(β) +

∑G
g=1 λg

{∑
j∈g Penalty(βj)

}
I Bayesian VARs, . . .
I Regression with dummy-coded categorical inputs
I . . .

Fused Penalties
I For problems with features having natural order,

sometimes we prefer neighboring coefficients to be
similar. . .

I Penalty = λ1
∑p

k=1 ||βi ||+ λ2
∑p−1

k=1 ||βi+1 − βi ||
I DNA, time series, . . .

Many other extensions: hierarchical adaptive lasso, spike-and-slab lasso, . . .



More on LASSO. . .



post-LASSO. . .

After Lasso, the estimated coefficient reflect the bias due to the
“tresholding”

Post-LASSO:
1. Estimate some version of LASSO
2. Apply OLS to the selected model to remove the bias

Sometimes, people forget to do post-Lasso.

Don’t be that person ;)



“Tune-free” Lasso. . . ?

Under certain conditions (Bickel, Ritov, Tsybakov, Ann. of Stat.
200) the rate-optimal choice of penalty level is

λ = σ2
√

2 log(pn)/n. (6)

Now. . .σ, variance of the error, is of course not known. . .

If need be, must be estimating iteratively, not a problem



The
√

LASSO
Belloni, Chernozhukov, Wang, Biometrika 2010

With a clever modification of the Lasso,√√√√1
n

n∑
i=1

[yi − x ′i β]
2 + λ||β||1 (7)

they show that the rate-optimal penalty level
is independent of σ.

λ =
√

2 log(pn)/n

The solution method is different from “standard” Lasso
approaches but this is as “tuning-free” Lasso as it gets. . .



Wonkish: More on Ridge Regression. . .

The problem is, for given λ

RSS(λ) = (y− Xβ)′(y− Xβ) + λβ′β (8)

with the solution
β̂r = (X′X− λI)−1X′y. (9)

The regularization by the diagonal matrix λI ameliorates the
collinearity and invertibility of the least-square problem. . .



Wonkish: Computing the LASSO parameters. . .

How can you solve LASSO? Many ways...

Coordinate Descent very simple to implement & intuitive

For f (x) = g(x) +
∑n

i=1 hi(xi) with g(x) convex and differentiable and each
hi(.) convex, coordinate descent can find a global minimizer...
Start with x (0) and for k = 1, 2, . . . repeat

x (k)
1 = arg min

x1

f (x1, x
(k−1)
2 , x (k−1)

3 , . . . , x (k−1)
n ) (10)

x (k)
2 = arg min

x2

f (x (k)
1 , x2, x

(k−1)
3 , . . . , x (k−1)

n ) (11)

. . . (12)

x (k)
n = arg min

xn

f (x (k)
1 , x (k)

2 , x (k−1)
3 , . . . , xn) (13)

And, crucially, there is a simple closed-form solution for each coordinate
optimization problem for the LASSO. . .



Wonkish: Computing the LASSO parameters. . .
Let’s have the problem of LASSO:

min
β

1
2N

N∑
i

(yi −
p∑

j=1

xi,jβj)
2 + λ

p∑
j=1

|βj | (14)

1. Compute ‘partial residuals’, rij = yi −
∑

k 6=j xikβk

2. Compute the LS coefficient β∗ = 1
N
∑N

i=1 xij rij

3. Use soft-thresholding to update βj

βj = S(β∗j , λ) = (β∗j )(|β∗j | − λ)+



Post-Selection Inference – SEE NEW SLIDES ON
INFERENCE!!
(Machine learning pratictioners rarely care about inferences. . . )

After the model search and selection (e.g. choosing ) you
CAN NOT

just use the p-values and such. . .

The whole model search process needs to be always, always,
always taken into account.

For explicit and admitted model search the literature is now
finding ways to do inference

One of the ways to account for model selection is to boostratp the whole
selection & estimation process. . . (Efron, 2013, Estimation and Accuracy after
Model Selection). Or sample splitting, double-selection lasso, etc.
Reading: Chernozhukov, Hansen, Spindler (2015), Tibshirani et al. (2016,JASA), . . .



ADDITIONAL SLIDES



Spike and Slab Model
Originally proposed by Mitchell and Beuchamp, 1988

In Bayesian variable selection, the requirement for sparsity is to set the
loading coef as γj = 1 if ‘relevant/useful’ and γj = 0 otherwise

For small problems, the posterior prob. of inclusion can be computed in an
exhaustive ways. . . but there are 2p models!

Spike-and-slab is based on a hierarchical prior for coefficients, β:

p(βj ;σ, γj) =

{
0 for γj = 0
N(βj ; 0, σ2σ2

β) for γj = 1

and

p(γ) =
p∏

k=1

π
γk
0 (1− π0)

1−γk = π
∑p

k γk
0 (1− π0)

p−∑p
k=1 (15)

so that the prior ‘penalty’ is

log p(γ|π0) = −λ×
∑
k=1

γk + const, γ ∈ {0, 1}

and π0 is prior expected fraction of large βjs and λ ≡ log 1−π0
π0

.



For Enthusiasts. . .

https://web.stanford.edu/ hastie/StatLearnSparsity files/SLS.pdf



Thank you for your patience. . .


