
Machine Learning for Economists:
Part 1 – Criterion Functions

Michal Andrle
International Monetary Fund

Washington, D.C.,
October, 2018

Disclaimer #1:

The views expressed herein are those of the authors and
should not be attributed to the International Monetary

Fund, its Executive Board, or its management.

LOSS FUNCTIONS

Loss Functions in Algorithm Training

loss function

model/algorithm

parameters

classification regression

train

p
re

d
ic

t

Decisions and Loss Function Choice (A)

Loss functions should vary with the goals of applications. . .

Regression:
I Interested in forecasting cycles? Is optimizing one-step-ahead forecast

error the right thing?
I Is your model meant to explain all frequencies (likelihood)
I Are your shocks close to Normal or fat tails, t-distrib? (robustness)
I . . .

Classification:
I Is one type of error much worse than another type of error?
I Are you worried your decision will kill someone? Or crash a car?
I Is the sample unbalanced? E.g. just 3% of positive samples?
I . . .

Decisions and Loss Function Choice (B)

Convex surrogate loss functions:
Sometimes the criterion of interest is too costly to compute, too hard to
optimize (non-smooth), or both.

Design a convex surrogate!

Example:
Minimizing Misclassification Rate, AUC (Area and the Curve) may be hard to
work with directly. . .

Yet, in principle optimize a criterion that you really care for. Especially with
smaller data/problems. . .
See Yi Shen (2003) or Hand and Vinciatti (2003, AmStat), . . .

Loss Function ‘Bestiary’

Numerical loss functions and surrogate loss functions:

1. REGRESSION:
I mean squared error (L2)
I mean absolute deviation (L1)
I Huber loss function
I Student-t loss function
I . . .

2. CLASSIFICATION: multivariate × binary
I log-loss/cross-entropy/Kullback-Leibler divergence
I Brier score
I misclassification rate
I 0-1 loss
I hinge loss
I . . .

By principle of estimation by analogy (Goldberger, 1964), one should create
such a loss function that expresses best the problem at hand. . .

Regression Loss Functions (1a)

Squared Error (“L2”) (y − ŷ)2

Absolute Deviation (“L1”) |y − ŷ |

Huber loss LH =

{
r2/2 if|r | ≤ δ

δ|r | − δ2/2 if|r | > δ
(1)

with r ≡ y − ŷ , ŷ = f (x)

General Minkowski |y − ŷ |q
. . .

User-defined asymmetric loss function should reflect the
problem and the cost of decision errors. . .

Regression Loss Functions (1b)

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L2 (square)
L1 (absolute value)
Huber loss [delta = 1.5]

Regression Loss Functions (1c)

-3 -2 -1 0 1 2 3
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

L2/square/log of Std. Normal
log of T-dist, v = 5

Classification Loss Functions

Classification – How to Encode?

1) Two-Class Problems:

For binary classification encoding {0|1} or {−1|1} is used.

2) Multiple-Class Problems:

“One Hot” Encoding of CATEGORICAL variables

obs. red green blue
#1 1 0 0
#2 0 1 0
#3 0 0 1
...

#N 0 1 0

Classification – Model Outcomes

I Class outcome
I Only class chosen is reported (e.g. 0 or 1). No probabilities,

e.g. SVMs or KNN. . .
I Usually can be converted to prob.-like outcome

I Probability or probability-like outcome
I Probability-like outcome for given input
I Threshold levels needed for assignment

Classification – Getting prob-like outcomes

Without a probabilistic model, model predictions about classes
need to be mapped to ‘probability-like’ scores. . .

I Real-valued index to probability, z ∈ R → [0,1]
Squashing functions (softmax, . . .)

I Class outcome to probability
Relative counts, . . .

Classification – “Squashing functions”

Softmax (Multinoulli Distribution)

qi = softmax(z)i =
exp(zi)∑K
j=1 exp(zj)

, (2)

with
∑

i qi = 1,0 ≤ qi ≤ 1, zi ∈ R.

Now q satisfies all the properties of a probability.

This is an important concept in classification and neural
networks.

Examples: logistic regression, neural-net classifiers, . . .

Classification – Majority Class Outcome

With a learner classifying by the ‘majority voting’ for a class
getting a probability-like scores is simple

p(classi) =
classi elements
group elements

Classification – Evaluating Loss Function

The classifier model may return probability or probability-like
quantities for each category, q, to compare with data, p.

obs. red green blue R G B
p (data) q (model fit)

#1 1 0 0 0.7 0.1 0.2
#2 0 1 0 0.3 0.6 0.1
#3 0 0 1 0.1 0.1 0.8
...

#N 0 1 0 0.3 0.3 0.4

Now, the model predictions need to be compared to data.

Multiple approaches possible, with different loss functions/distributions.

Classification – Common Loss Functions

Some commonly-used loss functions to train the model are:

I Log-loss (entropy, K/L distance) – de facto standard
I Squared error (Brier score)
I Misclassification error (Accuracy)
I . . .

Most often, these are surrogate loss functions. To evaluate the
results, other information is brought on board (coming up. . .)

For designing “proper scoring rules” see T. Gneiting and A.E. Raftery
(2007, JASA).

Classification – Distance between Distributions

Kullback-Leibler divergence:
Used to measure distance between distributions P and Q.

DKL(P||Q) = −
∑

x

p(x) log q(x)︸ ︷︷ ︸
cross entropy

+
∑

x

p(x) log p(x)︸ ︷︷ ︸
entropy

,

where p(x), q(x) are either a probability or probability-like measure,
0 ≤ p(x) ≤ 1.

For a given distribution, P, K-L divergence, DKL, and cross
entropy differ by a constant (of entropy of p).

In the code, take care of 0 × log(0) cases and such. . .

Classification

The classifier model returns probability or probability-like
quantities for each category. . .

Cross-Entropy loss (“distance” between two distributions):

H(p,q) = −
∑

x

p(x)× log q(x) (3)

obs. red green blue R G B H(p,q)
#1 1 0 0 0.7 0.1 0.2 0.36
#2 0 1 0 0.3 0.6 0.1 0.51
#3 0 0 1 0.1 0.1 0.8 0.22
...

...
#N 0 1 0 0.3 0.3 0.4 1.20

Example: Log-Loss Function Weights

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p(x=1)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

lo
g

lo
ss

Log-Loss for Truth=1

Note: Misclassification rate accounts for errors with high probability with the same weight as for errors with low
probability. . .

Evaluating Classification Results

For classification, the loss function value can be hard to
interpret. . .

Common Classification Metrics:
I Misclassification Rate
I Probability Calibration
I Confusion Matrix

I Sensitivity, Specificity, F1, . . .
I Receiver Operating Characteristic (ROC) Curves
I . . .

Probability Calibration

Are the probability-like numbers p ∈ [0,1] “true” probabilities?

Well-Calibrated Probabilities:
When the predicted class probability reflects the true likelihood
of the event.

Essentially, out of all data points you assign 70% probability of
being ‘Class A’, roughly 70% should turn out as ‘Class A’

If probabilities are not well calibrated, they can be re-calibrated
using a link model (e.g. Platt’s logistic regression, etc.)

Probability Calibration Plot

0 100%50%

100%

50%

O
b
se

rv
e
d
 E

v
e
n
t

Pe
rc

e
n
ta

g
e

Bin Midpoint

perfectly calibrated

Probability Calibration Plot

Example: Calibration Plot for Credit-Card Default Model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Mean Predicted Value

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
F

ra
ct

io
n

of
 P

os
iti

ve
s

Reliability Diagram

Note: Forecast from RandomForests rarely reach 0 or 1 prob.

Confusion Matrix – Two-Class Problem

Predicted Class Actual Class
Positive Negative

Positive TP FP TP/(TP+FP) precision

Negative FN TN TN/(FN+TN) neg. pred. value

TP/(TP+FN) TN/(FP+TN) (TP+TN)/(P+N) accuracy

recall, sensitivity specificity

TP = True Positive
FP = False Positive = Type I Error
TN = True Negative
FN = False Negative = Type II Error

P = TP + FN, All Positive
N = TN + FP, All Negative

Confusion matrices are conditional on chosen classification threshold.

Confusion Matrix for Credit Card Data Defaults

1 0

Target Class

1

0

O
u

tp
u

t
C

la
ss

Testing Data Confusion Matrix

684
7.6%

1339
14.9%

33.8%
66.2%

315
3.5%

6662
74.0%

95.5%
4.5%

68.5%
31.5%

83.3%
16.7%

81.6%
18.4%

True Positives False Positives Precision

False Negatives True Negatives

Sensitivity (Recall) Specificity Accuracy

Understanding Classification (1)

Sensitivity = Recall = Hit Rate = True Positive Rate (TPR)
I TPR = TP/P = TP/(TP + FN)
I Out of all actual positives (TP + FN), how many were classified correctly?
I How good is the test at detecting positives?

Specificity = Selectivity = True Negative Rate (TNR)
I TNR = TN/N = TN/(TN + FP)
I Out of all actual negatives (TN + FP), how many were correctly classified as

negatives?
I How good at avoiding ‘false alarms’ (FPs)

Precision
I Precision = TP/(TP + FP)
I Out of all ‘positive’ predictions, how many predictions are correct?
I How many positive predictions were relevant?

Understanding Classification (2) – Summary

Sensitivity = Recall = Hit Rate = True Positive Rate (TPR)
TPR = TP/P = TP/(TP + FN)

Specificity = Selectivity = True Negative Rate (TNR)
TNR = TN/N = TN/(TN + FP)

Precision = Positive Predictive Value (PPV)
Precision = TP/ (TP + FP)

False Discovery Rate
FDR = FP/(TP + FP) = 1 - Precision

Accuracy
AC = (TP + TN)/(P + N) = # correct matches/population
Prevalence
PREV = P/(P + N) = # all positive/population

Understanding Classification (2) – Examples

Detecting Financial Crisis:
I Imbalanced sample – not all that many crises (say 3%)
I Never crying ‘bear’ yields high accuracy and zero precision. . .
I Seeing always a crisis yields high recall but very low precision (too many false

alarms)

Detecting Loan Default:
I Imbalanced sample – roughly 20% default on loan
I Assume a return on loan is 5% and default -95 %

I To maximize profit, you want to avoid permanent loss of capital, i.e. detect
defaults well, risking losing some good business. . .

Receiver Operating Characteristic (ROC) curve

ROC curve is a plot of true positive rate (TPR, sensitivity)
against the false positive rate (FPR, 1-Specificity) at various
threshold values.

For fixed accuracy of the model, there usually is a trade-off
between sensitivity and specificity.

ROC curves map this trade-off.

Receiver Operating Characteristic (ROC) Curve

False Positive Rate

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

0
1

1

0

ideal
random
informative
more informative

(S
e
n
si

ti
v
it

y
)

(1-Specificity)

A perfect class separation would have 100% sensitivity and specificity.

AUC – Area Under the [ROC] Curve

Often, the area under the ROC curve (AUC) is used as a
summary measure for the ROC curve and model performance,
model comparison

AUC may hide information as very different models can have
identical AUC, i.e. ROC curves for different models may
cross. . .

AUC vs. ROC Curve

False Positive Rate

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

0
1

1

0

ideal
random
Model A
Model B

(S
e
n
si

ti
v
it

y
)

(1-Specificity)

AUC(A) ~ AUC(B)

Other Measures

I F-score
I F = 2× Precision× Recall/(Precision + Recall)
I Expresses trade-off between precision and recall

I Youden’s J-Index
I J = Sensitivity + Specificity − 1
I Measures correctly indicated proportions for both classses

I Cohen’s Kappa
I κ =

accuracy−expected accuracy
1−expected accuracy ∈ [−1, 1]

I Expected accuracy based on marginal totals in conf. matrix
I If 90% of test are expected positive events, 89% accuracy is not

amazing. . .

I Non-Accuracy-Based Criteria!
I Ideally, the purpose helps to make it clear. . .
I Expected profits, expected costs, Sharpe ratios. . .

ROC Curve Analysis Example

Using Youden’s J-index we’ll pick a new threshold on the same ROC curve. . .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate (1-Specificity)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

os
iti

ve
 R

at
e

(S
en

si
tiv

ity
)

J index (threshold = 0.2)

ROC Curve
as random
J-Index
50% threshold

Threshold Accuracy Precision Sensitivity Specificity
0.5 0.82 0.69 0.34 0.95
0.2 0.75 0.45 0.63 0.78

Changing Threshold: Classification Trade-Offs

‘Traditional’ 50% cut-off

1 0

Target Class

1

0

O
u

tp
u

t
C

la
ss

Testing Data Confusion Matrix

684
7.6%

1339
14.9%

33.8%
66.2%

315
3.5%

6662
74.0%

95.5%
4.5%

68.5%
31.5%

83.3%
16.7%

81.6%
18.4%

True Positives False Positives Precision

False Negatives True Negatives

Sensitivity (Recall) Specificity Accuracy

Alternative 20% cut-off

1 0

Target Class

1

0

O
u

tp
u

t
C

la
ss

Testing Data Confusion Matrix

1279
14.2%

744
8.3%

63.2%
36.8%

1535
17.1%

5442
60.5%

78.0%
22.0%

45.5%
54.5%

88.0%
12.0%

74.7%
25.3%

True Positives False Positives Precision

False Negatives True Negatives

Sensitivity (Recall) Specificity Accuracy

In reality, the choice for the threshold would depend on the cost
of misclassification error.

Changing Threshold: Hypothetical RoA

Imagine you have a portfolio of USD N × $100 and can make $100 loans. Each loan’s
cost are 1%. If you don’t make the loan, you can invest for riskless rate of 1%. If loan is
made and successful the return is 15%. If the loan defaults, loss-given-default is 70%.
If everybody gets a loan, 22% of borrowers default on it.

So. . . recall or precission? Do you recall?

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

threshold

-4

-2

0

2

4

%

Hypotetical Test Set :Return on Assets (% p.a.)

0.2 0.4 0.6 0.8

threshold

0

0.5

1

Recall (Sensitivity)
Precision

0.2 0.4 0.6 0.8

threshold

0

0.5

1

Portfolio Share in Loans

Wonkish: Softmax vs. Cross-Entropy

Softmax ‘squashing’ function and cross entropy are not the
same thing.

Since the “truth” is a mass point, i.e. pi is either 1 or 0, the log
of softmax is the cross-entropy.

H(p, q) = −(0 × log q1 + 1 × log q2 + 0 × log q3 + . . .) (4)

H(p, q) = − log q2 = −(x2 − log
∑

j

exp(xj)) (5)

Hence, oftentimes, classification people talk about softmax and
cross entropy as about the same thing. . .
and it can be puzzling1

1or maybe it’s just me

Wonkish: Softmax and Cross-Entropy vs. Logistic
Regression

Logistic regression is a special case of two classes only
(K = 2).

q1(xi) =
exp(θ′1xi)

exp(θ′1xi)+exp(θ′2xi)
q2(xi) =

exp(θ′2xi)

exp(θ′1xi)+exp(θ′2xi)

‘Naive’ K-level softmax is overparameterized, only K − 1 degrees of freedom.
Normalize one group, and define ψ′ = θ′1 − θ′2.

q2(xi) =
exp(0i)

exp(ψ′xi)+exp(0′×xi)
= 1

exp(ψ′xi)+1

q1(xi) =
exp(ψ′xi)

exp(ψ′xi)+exp(0′×xi)
= exp(ψ′xi)

exp(ψ′xi)+1 = 1− 1
exp(ψ′xi)+1 = 1− q2(xi)

Now, the loss function defined via cross-entropy for N observations:

J(ψ) =
N∑
i

H(ŷi , q(φ, xi)) =
N∑
i

[ŷi log q2(xi) + (1− ŷi) log(1− q2(xi)] (6)

Thank you for your patience. . .

