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Learning 6= Fitting

Learning: Choose a model with sufficient representational
capacity that will perform well out-of-sample.

For given data, increasing model’s capacity increases
over-fitting.

Overfitting:
I Fits available data, does not generalize well to new data

from the population (nature’s) distribution
I Small with training sample error, large test sample error
I Occurs when model complexity too large for available data

sample (low ‘degrees of freedom’)

Avoiding overfitting is one of top issues in all types of machine learning and
deep learning.



Overfitting

“With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.”

John von Neumann [quoted by Enrico Fermi]



Von Neuman-Mayer Elephant

Mayer et al., Am. J. Phys. 78(6), June 2010



Capacity Selection: Extreme Curve Fitting

For {x1, . . . , xn} and {y1, . . . , yn}, choose a model

yi = β0 + β1xi + β2x2
i + · · ·+ βMxM

i = f (x , β)

to minimize

err =
N∑
i

{yi − f (x , β)2}.

However:
Any n points can be fit exactly by n − 1 degree polynomial!

In-sample Fit: Perfect Out-of-Sample Fit: Disaster!

Note: These are not orthogonal polynomials.



Capacity Selection: Over-fitting
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Capacity Selection: Over-fitting
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Capacity Selection: Over-fitting
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Capacity Selection: Over-fitting
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Capacity Selection: Getting More Observations. . .

0 0.5 1
-2

-1

0

1

2
M=1

0 0.5 1
-2

-1

0

1

2
M=2

0 0.5 1
-2

-1

0

1

2
M=3

0 0.5 1
-2

-1

0

1

2
M=9



Model Order Selection (“Structural Stabilization”)

Estimate using training sample,o, and choose the best model
on a test sample,+
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Capacity Selection: Over-fitting

Very unsetling. . .

Coefficients M = 1 M = 4 M = 9
β0 0.746 -0.112 0.00048
β1 -1.57 11.139 6.276
β2 -32.621 0.157
β3 21.635 -43.086
β4 10.871
β5 39.874
β6 102.809
β7 -239.546
β8 157.725
β9 -35.089

+ In-sample fit is great

– Really bad generalization

– Unstable coefficients

– Predictors highly correlated

What’s happening?
Try to regularize the problem!
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Capacity Selection: Over-fitting

Very unsetling. . .

Coefficients M = 1 M = 4 M = 9
β0 0.746 -0.112 0.00048
β1 -1.57 11.139 6.276
β2 -32.621 0.157
β3 21.635 -43.086
β4 10.871
β5 39.874
β6 102.809
β7 -239.546
β8 157.725
β9 -35.089

+ In-sample fit is great

– Really bad generalization

– Unstable coefficients

– Predictors highly correlated

What’s the solution?
Try to regularize the problem!
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Regularization

Regularization:

“Any modification we make to a learning algorithm that is
intended to reduce its generalization error but not its training
error.”

Goodfellow et al. 2017 (pp. 117, Deep Learning)

Regularization embeds a set of priors for solutions into the
learning process.

As N →∞ the model puts less and less weight on the prior
restrictions, adapting to data, and increasing effective capacity



Regularization (1)

Regularization:
Introducing prior constraints to solve ill-conditioned problems.

Let’s try to penalize the size of the regression coefficients to
prevent overfitting. . .

New problem to minimize:

err =
N∑
i

{yi − f (x , β)}2 + λ


M∑

j=1

(βj − 0)2

 .

Hyperparameter λ (tuning parameter) determines the size of the penalty.

λ =

 0 standard least-squares
(0,∞) regularized regression
∞ β1 = β2 = · · · = βM = 0

YES,. . . this IS very Bayesian, with a prior βi ∼ N(0, 1/λ)



Regularization: Choosing Complexity

We can estimate models with general models with polynomial order M = 9
and λ = {1, . . . , λmax} on the training data and evaluate each model on test
data
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Regularization: Choosing Complexity

We can estimate models with general models with M = 9 and
λ = {1, . . . , λmax} on the training data and evaluate each model on test data
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Regularization: Choosing Complexity

Regularized model with order M = 9, 11 observations and complexity
determined using the test data searching for ‘optimal’ λ
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Regularization: Choosing Complexity

Regularized model with order M = 9, 111 observations and complexity
determined using the test data searching for ‘optimal’ λ
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Overfitting Classifiers. . .



Overfitting Classifiers. . .
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true separation
OVERFITTING

The model must strike a balance between bias and variance over the new
samples. . . [from the true, unkown, and hopefully stable DGP]



Regularization (2)– Beyond Parameter Priors

Apart from various parameter priors, is there anything else?

How about estimating many models using boostrapped data
and aggregating their forecast? BAGGING!

Bootstrap Aggregating:
I Common model ensemble method to lower variance
I Useful for unstable estimators, often used with trees

(Random Forests)

Our case:
I Re-sample data with replacement R-times, R = 90
I Aggregate the model estimates, ŷr using median



Regularization (2b)– Beyond Parameter Priors
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Regularization (3)– Beyond Parameter Priors

Can we try something else? How about data augmentation?

Data augmentation:
Add modified/corrupted data to the sample to avoid overfitting.

Examples:
I Add rotated images to the sample
I Add images/sounds corrupted by white noise to the sample
I Attempt to address unbalanced datasets for classification (SMOTE, etc.)

Our case:
Select 1/3 of the sample, create new data points by adding
εi ∼ N(0, σ) to input xi , keeping output, yi unchanged. . .



Regularization (3b) – Data Augmentation

Add noise to portion of the data and augment the dataset. . .
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Note: This is not an accident. Bishop (1998) shows training with noise amounts to L2 penalty regularization.



Regularization – Summary

Regularization process is adaptive and can take many forms.

Important examples:

I Coefficient penalties, sparsity shrinkage, parameter sharing, . . .

I Bootstrap aggregating (‘Bagging’) of models

I Random perturbations to model structure, model averaging, early
stopping

I Artificial feature corruption
(dropout, data augmenting, adding noise)

I Theory – putting a weight on a-priori theory, parameter sharing, . . .



Regularization – Hyper Parameter ‘Tuning’

Regularization process introduces hyper parameters.

Hyper-parameters cannot be optimized using in-sample fit.

Regularization may WORSEN in-sample fit,
to help IMPROVE out-of-sample fit.

Algorithm Hyperparameter Examples
parametric models weight-decay penalties,

∑p
i=1 |βi − 0|q

trees, random forests depth of trees, number of trees,
minimum leaf size, . . .

nearest-neighbor number of neighbors
neural nets weight-decay, drop-out, layer architecture
. . .



Regularization – Hyper Parameter ‘Tuning’

How to set the “right values” of tuning parameters?

1. Setting them a priori, as priors.

2. Optimizing them using different data than used for model
training. (validation sample, cross-validation, . . . )

Get used to watching charts like this:
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Fixing Overfitting

1. Use more data
Given the model, increase in informative data size lowers overfitting

2. Structural stabilization
Lower the number of free parameters, simplify complexity

- Inflexible, doesn’t adjust to data
- Lowering model-hypothesis space may exclude ‘truth’

3. Regularization
Keep using complex model, impose prior restrictions on behavior . . .

+ Keeps large model-hypothesis space, stays flexible
+ Effective representational capacity adapts to information in the

data



Bias-Variance Trade-Off

The frequentist view on model complexity is about
bias-variance trade-off.

Treating the given data as a draw from an unknown population, the expected
mean-square (population) error is a combination of bias and variance.

1. More complex model may have lower bias but large variance if
re-estimated on new draws from the population

2. Less complex model may have higher bias but lower variance, being
less sensitive to new draws from the population

In Bayesian setting when one marginalizes over parameters the over-fitting
phenomenon is largely absent. . .



Bias-Variance Trade-Off

−0.5 0 0.5

Complex Model: Lower Bias, Higher Variance  

2

1

0

−1

−0.5 0 0.5

Simple Model:  Higher Bias, Lower Variance  

2

1

0

−1



Bias-Variance Trade-Off

Decomposing population expected mean-square error:

expected loss = bias2 + variance + irreducible noise

To minimize Expected MSE:
Trade lower variance for higher bias,

if possible

By Gauss-Markov theorem, least squares have the smallest variance among
all the unbiased estimates. . . If β̂ has large variance, ŷ = β̂′x has high
variance too

. . . statistical learning trades bias for lower variance, in order for models to
generalize well to new data



Bias-Variance Trade-Off
Let’s y = f (x). For a given estimate ŷ = f̂ (x), we assess
population mean squared error

E [(y − f̂ (x))2] = E [y2] + E [̂f 2]− 2E [y f̂ ]

= (var[y ] + E [y ]2) + (var[̂f ] + E [̂f ]2)− 2fE [̂f ]

= var[y ] + var[̂f ] + (f − E [̂f ])2

= σ2 + variance + bias



Bias-Variance Trade-Off
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Wonkish: Bias-Variance Trade-Off for Classification

Say, if using a 0-1 loss, L(ŷ , y) = I(ŷ = y), bias and variance combine
multiplicatively. . .

With 0-1 loss, estimation errors that leave you making the right 0/1 decision are not
painful. Also, when on the wrong side of the decision boundary with a negative bias, it
pays off to increase variance.

The choice of hyperparameters (tuning parameters) and/or model selection thus
should rather focus on estimation of expected loss.



Regularization – Wonkish. . .

The regularization examples were meant to provide intuition. . .

For LINEAR regression, the ridge regression, data augmentation, bagged
data-augmentation, or feature dropout all imply an L2 penalty. . . [if you do all the
algebra]

For more complex, nonlinear models, the regularization penalties implied by these
techniques start to significantly differ. . .

Different forms of regularization are suitable for different forms of training, given the
problem and the computation tools used

See Wager, Wang, and Liang (Nov 2013)



SUPERVISED LEARNING PROBLEM:
SUMMARY



The Elements of Learning

The Problem:
An unknown mapping, u, from input space, X , to output space, Y,
u : X → Y, such that yj = f (xj).

Hypothesis Set:
A set R(f ) containing candidate mappings (models, hypotheses) mean to
approximate the unknown mapping u.

Observed Data:
A finite set D = {(x1, y1), . . . , (xk , yk )} , or D = {(x1, x2), . . . , (xk , xk )}.

Algorithm:
An algorithm, A, that uses observed data, D ∈, to learn a mapping
f : X → Y, f ∈ R(f ).

Error Measure (Distance/Loss/Utility Function)
A metric E used by the algorithm A to choose a mapping g.



Machine Learning
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Supervised Learning = Training + Validation

1. Using training data optimize for f (.)

2. Using validation set search hyper-parameters to optimize
out-of-sample fit

Choose f̂ (.) such that

f̂ (.) = arg min
f∈FA

N∑
i=1

D[yi , f (xi)] s.t . R(f ) ≤ c

= arg min
f∈FA

N∑
i=1

D[yi , f (xi)]− λ{R(f )− c}

D(.) loss function due to difference between yi and f (xi )
β coefficients to be estimated
FA function space with architecture A
R(f ) regularizer of the function f (.)
λ regularization tightness, “shadow price” . . .



Supervised Learning Problem Defined (2)

Example: Bayesian [V]AR (ridge-regression with K lags)

f̂ (.) = arg min
f∈FA

N∑
i=1

D[yi , f (xi)]− λ{R(f )− c}

D(.) Quadratic loss, [yi − f (xi )]
2

FA Linear model with coefs β, K lags: yv = f (x) = β0 + β1yt−1 + · · ·+ βk yt−k

R(f ) Ridge (Normal prior):
∑K

j=1(βij − 0)2 × jλ1

λ A-Priori Regularization tightness,

λ0 – overall tightness, λ1 – higher lag, larger shrinkage to zero

LEARNING:
1) For given D,FA,R(f ) and λ use training data to find β.
2) Use validation data set to search for λ, number of lags, etc.



Thank you for your patience. . .


