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Ensemble Learning

Often, a combination of models performs better than a single
model

Both different algorithms or variations of one algorithm can be
combined into model ensembles

y = G {f1(x), f2(x), . . . , fR(x)} (1)



Model Ensembles

Some popular approaches:

I Bagging – Bootstrap Aggregating
Aggregating models estimated on multiple re-sampled datasets

I Stacking
‘Optimal’ Weighted average of various algorithms. . .

I Boosting – Gradient Boosting
Greedy fitting of adaptive basis-function models, each stage lowering
the error

Note that these three approaches are three very different ones!



Bagging – Bootstrap Aggregating
Breiman (1996)

Take data sample D = {(y1, x1), (y2, x2), . . . , (yN , xN), } and
create R bootstrap samples by re-sampling with replacement,
D∗r , r = 1,2, . . . ,R.

For each bootsrap sample, D∗r , train a separate model f ∗r (x).

The ‘bagged’ (bagging) estimate is given by

fbagg = F{f1(x), f2(x), . . . , fR(x)}, (2)

most often by

fbagg =
1
R

R∑
r=1

f ∗r (x). (3)



Bagging – Bootstrap Aggregating

Bagged estimate, fbagg differs from the estimate on the full
sample only if f (.) is nonlinear or adaptive function of the data,
or if the aggregation, F (.), is nonlinear (e.g. median, etc.)

Bagging is often used with trees, where f (x) is non-linear a
and for each bootstrap sample D∗r the tree often has different
features and splits. . .

Bagging may help with lowering the variance of the final
estimator for models sensitive to data-sample changes
(unstable)

To some extent, bagged estimate is analogous to Bayesian posterior distribution
mean. . .



Bagging – Bootstrap Aggregating

Bagging will work for ‘uncorrelated’ models.

For uncorrelated variables, xi , with variance σ2 the variance of
their average is lower:

var(x̄) =
σ2

n
(4)

For variables with pair-wise correlation ρ, the variance of the
average is

var(x̄) =
σ2

n
+

n − 1
n

ρ σ2. (5)

‘Wisdom of crowds’ requires diverse and independent members
of the crowd. . .



Model Averaging and Stacking

Model averaging strives to create a superior learner, fs, by
combining a set of learners {f1(x), . . . , fK (x)}:

fs =
K∑

k=1

wk fk (x) (6)



Model Combination

How to choose the weights, w , in

fs =
K∑

k=1

wk fk (x)?

An intuitive (and wrong) solution seems to be

w = arg maxw

n∑
i=1

[yi −
K∑

k=1

wk f̂k (x)]2 (7)

Problem:
Weights estimation and f̂k estimation uses the same data,
irrespective of model complexity. . .



Stacking

Stacking estimates the weights, wk , using prediction error on a
hold-out (validation) set. . .

Let f̂−H,k (x) be the k -th model estimated excluding datapoints
in the hold out set, H: (yi , xi), i ∈ H.

We find the weights by:

w = arg maxw

n∑
i∈H

[yi −
K∑

k=1

wk f̂−H,k (x)]2 (8)

For good performance on regression problems, Breiman (1996)
shows that the weights should be non-negative, wk ≥ 0.



Wonkish: Careful, BMA is NOT model combination

Bayesian model averaging (BMA) can improve upon a single model

p(y |z) =
K∑

k=1

p(Mk |z)× p(y |Mk , z) (9)

Models predictions are weighted by the posterior probability of the model, Mk ,
given the available data, z = (x, y).

Note that p(Mk |z) ∈ [0, 1].

Note that BMA is not ‘model combination’ (Minka, 2002) and Monteith et al.
(2011).

BMA assumes that the K models express mutually exclusive and exhaustive ways how
the data were generated. BMA integrates the uncertainty but is more a model selection
than combination. . .



Boosting [Gentle Introduction]
Freund and Schapire (1995), Breiman (1996) and Friedman (2001)

Boosting is one of the most powerful approaches to
supervised learning. . .

Boosting creates an additive model of the form

f (x) =
K∑

k=1

βkφ(x ; γk ), (10)

where φ(x ; γk ) are base learners (or ‘weak learners’).

‘Basis expansions’ used in econ/stats all the time (wavelets,
func. interpolation, . . . )

With boosting, the parameters (βk , γk ) are estimated in a
stage-wise manner, not simultaneously. . .



Boosting

Boosting estimates the first learner, φ1(x ; γ1) to explain the data and sets
f1 = β1φ1(x ; γ1).

The new learner, φ(x ; γ2) is estimated to minimize the residuals from the
previous stage, i.e.

(β2, γ2) = arg min
N∑

i=1

((yi − f1)− β2φ(xi ; γ2))
2 (11)

= arg min
N∑

i=1

(yi − [f1 + β2φ(xi ; γ2)])
2 (12)

and the aggregate model is updated

f2 = f1 + β2φ(x ; γ2) = β1φ(x ; γ1) + β2φ(x ; γ2) (13)

At each stage, new learner is fit to remaining residuals. . .



Boosting
Forward Stage-Wise Additive Modeling

For a general loss function, L[y , f (x)], the boosting algorithm is
as follows:

1. Initialize f0 = 0.

2. For k = 1 to K :
2.1 Estimate the new base learner

(βk , γk ) = arg max
β,γ

N∑
i=1

L[yi , fk−1(xi ) + βkφ(xi ; γk )] (14)

2.2 Update the model aggregate

fk (x) = fk−1(x) + α× βkφ(x ; γk ), 0 < α ≤ 1 (15)

Learning speed, α, further slows down learning, acts as a
shrinkage, and helps to avoid overfitting. . .



Boosting
Historical Perspective. . .

Boosting is due to Schapire and Freund (1995) and their
‘AdaBoost.M1’ algorithm for classification. . .

Boosting worked so well, peole started to wonder WHY?

It became clear that AdaBoost can be viewed as stage-wise
additive model optimizing the exponential loss criterion. . .

Modern understanding of boosting is due to Breiman (1998)
and Friedman (2000), who showed it is a gradient descent in
function space, ‘gradient boosting’.

In boosting, base learners are often trees, or stumps –
one-level decision trees. . .



Wonkish: Gradient Boosting
Follows Friedman (2000) but simplified

For some loss functions and base learners, solving (14) can be difficult. . .

Then, βφ(x ; γ) in the update step fk = fk−1 + βφ(x ; γ) can be viewed as a
‘best greedy step’ as indicated by the negative gradient

The gradient gk (xi) ≡ [∂L(yi ,Fk−1(xi)/∂Fk−1(xi)] can be evaluated but it’s
just numbers and we need a function. . .

So we estimate a functional approximation for the gradient

(β, γ) = arg min
N∑

i=1

[−gk (xi)− βφ(xi ; γ)]
2. (16)

The parameterized estimate of the gradient is used in the function update

fk (x) = fk−1(x) + α× βkφ(x ; γk ). (17)

Note that for the special case L = (y − f (x))2, the gradient is g(x) = (y − f (x)) = εi and
[−g(x) − βφ(x ; γ)]2 = [ε− βφ(x ; γ)]2. Thus, φ(x ; γ) is fit to residuals from the previous stage. . .



Thank you for your patience. . .


