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Ensemble Learning

Often, a combination of models performs better than a single
model

Both different algorithms or variations of one algorithm can be
combined into model ensembles

y = G{f(x), f(x),...,frR(X)} (1)



Model Ensembles
Some popular approaches:

» Bagging — Bootstrap Aggregating
Aggregating models estimated on multiple re-sampled datasets

» Stacking
‘Optimal’ Weighted average of various algorithms. ..

» Boosting — Gradient Boosting

Greedy fitting of adaptive basis-function models, each stage lowering
the error

Note that these three approaches are three very different ones!



Bagging — Bootstrap Aggregating

Breiman (1996)

Take data sample D = {(y1, x1), (¥2, X2), - - -, (¥n, Xn). } @and
create R bootstrap samples by re-sampling with replacement,
D:r=1,2,...,R.
For each bootsrap sample, Dy, train a separate model f(x).
The ‘bagged’ (bagging) estimate is given by

fragg = F{f1(X), fa(X), ..., Tr(X)}, (2)

most often by

1 R
fbagg = R Z fr*(x)' 3)

r=1



Bagging — Bootstrap Aggregating

Bagged estimate, fp5gg differs from the estimate on the full
sample only if f(.) is nonlinear or adaptive function of the data,
or if the aggregation, F(.), is nonlinear (e.g. median, etc.)

Bagging is often used with trees, where f(x) is non-linear a
and for each bootstrap sample D; the tree often has different
features and splits. ..

Bagging may help with lowering the variance of the final
estimator for models sensitive to data-sample changes
(unstable)

To some extent, bagged estimate is analogous to Bayesian posterior distribution
mean. ..



Bagging — Bootstrap Aggregating

Bagging will work for ‘uncorrelated’ models.

For uncorrelated variables, x;, with variance o2 the variance of
their average is lower:

52
var(x) = — 4)

For variables with pair-wise correlation p, the variance of the

average is

0'2 n—1 2

var()'():7+ PO (5)

‘Wisdom of crowds’ requires diverse and independent members
of the crowd. ..



Model Averaging and Stacking

Model averaging strives to create a superior learner, fg, by
combining a set of learners {f;(x), ..., fx(x)}:

K
fs = Z kak(x)
k=1



Model Combination

How to choose the weights, w, in

K
fs = Z kak(X)?

k=1

An intuitive (and wrong) solution seems to be

n K
w=argmax, » [yi— > wifi(X)]?
= k=

Problem: R
Weights estimation and f, estimation uses the same data,
irrespective of model complexity. . .



Stacking

Stacking estimates the weights, wy, using prediction error on a
hold-out (validation) set. ..

Let 7_H7k(x) be the k-th model estimated excluding datapoints
in the hold out set, H: (y;, x;), i € H.

We find the weights by:

n K
w=argmax, » [yi— > Wkl uk(X)P? (8)
ieH k=1

For good performance on regression problems, Breiman (1996)
shows that the weights should be non-negative, wy > 0.



Wonkish: Careful, BMA is NOT model combination

Bayesian model averaging (BMA) can improve upon a single model

K
p(yIz) = > p(Milz) x p(y|Mx,2) ©9)

k=1

Models predictions are weighted by the posterior probability of the model, M,
given the available data, z = (x,y).

Note that p(Mk|z) € [0, 1].
Note that BMA is not ‘model combination’ (Minka, 2002) and Monteith et al.
(2011).

BMA assumes that the K models express mutually exclusive and exhaustive ways how
the data were generated. BMA integrates the uncertainty but is more a model selection
than combination. ..



Boosting [Gentle Introduction]

Freund and Schapire (1995), Breiman (1996) and Friedman (2001)

Boosting is one of the most powerful approaches to
supervised learning. . .

Boosting creates an additive model of the form

K
f(X) = Brd(X: W), (10)

k=1
where ¢(x; vx) are base learners (or ‘weak learners’).

‘Basis expansions’ used in econ/stats all the time (wavelets,
func. interpolation, ...)

With boosting, the parameters (5k, 1x) are estimated in a
stage-wise manner, not simultaneously. . .



Boosting

Boosting estimates the first learner, ¢1(x; 1) to explain the data and sets
fi = Big1(x; ).

The new learner, ¢(x; ~2) is estimated to minimize the residuals from the
previous stage, i.e.

(B2,72) = argmmz i — h) = B2p(Xii 7))’ (11)

= arg mmz — [fi + Bao(xi: 712)])? (12)

and the aggregate model is updated

fo = fi 4 Bad(X; v2) = B1o(X; 1) + B2pp(X; 12) (13)

At each stage, new learner is fit to remaining residuals. . .



Boosting
Forward Stage-Wise Additive Modeling

For a general loss function, L[y, f(x)], the boosting algorithm is
as follows:

1. Initialize f = 0.

2. Fork=1to K:
2.1 Estimate the new base learner

N
(B k) = arg ng%xz Llyi, fk—1(xi) + Brd(Xisv)] - (14)
Ti=1

2.2 Update the model aggregate

fe(X) = f_1(X) + a x Brp(X;7), 0 < a <1 (15)

Learning speed, «, further slows down learning, acts as a
shrinkage, and helps to avoid overfitting. . .



Boosting

Historical Perspective. . .

Boosting is due to Schapire and Freund (1995) and their
‘AdaBoost.M1’ algorithm for classification. ..

Boosting worked so well, peole started to wonder WHY?

It became clear that AdaBoost can be viewed as stage-wise
additive model optimizing the exponential loss criterion. . .

Modern understanding of boosting is due to Breiman (1998)
and Friedman (2000), who showed it is a gradient descent in
function space, ‘gradient boosting’.

In boosting, base learners are often trees, or stumps —
one-level decision trees. ..



Wonkish: Gradient Boosting

Follows Friedman (2000) but simplified

For some loss functions and base learners, solving (14) can be difficult. . .

Then, B¢(x;~) in the update step fx = fk—1 + B¢(x; v) can be viewed as a
‘best greedy step’ as indicated by the negative gradient

The gradient gk(xi) = [OL(Vi, Fk—1(xi)/OFk—1(X;)] can be evaluated but it's
just numbers and we need a function. ..

So we estimate a functional approximation for the gradient

N
(B,7) = argminy _[=gk(x) — B(xi M]*. (16)

i=1

The parameterized estimate of the gradient is used in the function update

fk(X) = fk_1(X) + a X ﬂk(,b(X; 'Yk)~ (17)

Note that for the special case L = (y — f(x))?, the gradient is g(x) = (y — f(x)) = ¢; and
[—g(x) — Bo(x: )P = [e — Bo(x; 7)]?. Thus, p(x; v) is fit to residuals from the previous stage. . .



Thank you for your patience...



