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CURSE OF DIMENSIONALITY



Curse of Dimensionality (1)

As number of dimensions in the problem increases, things get
less intuitive. . .

1. Overfitting issues
With enough dimensions, almost everybody is an outlier. . .
Prob(you=female,you=Greek,you=play harp, you=IMF econ) = ?

2. Computational issues

Curse of dimensionality can make the BIG DATA often quite
SMALL, as the effective no. of data points for some cases is
small

A few things are common, most things are rare (language, movie ratings, . . . )



Curse of Dimensionality (1b)

k-Nearest Neighbor modeling is flexible and can work really
well in low-dimensional problems. . .

It can break down in high dimensions.

Your nearest neighbor can be on the opposite side of spectrum
along some dimensions. . .



Curse of Dimensionality (2)
If N1 = 20 is dense for d = 1, you need N2 = 400, N3 = 8000,
. . .
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Curse of Dimensionality (3a)
Searching for a nearest neighbor in uniformly dist. d-dim unit hypercube?

With 10 dimensions, to find 10% of nearest neighbors, you must “travel”
through 80% of the cube’s edges. . . Not very local, is it?
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Follows Hastie et al. 2009



Curse of Dimensionality (3b)

Our intuition betrays us tremendously in high-dimensions!

For a high-dim unit-radius sphere:
I Almost all data live in the corners

of the hyper cube
I Almost all volume of high-dim sphere

is contained in a thin slice
I There is essentially no interior

volume
I As the number of dim increases, the

volume of the sphere goes to zero
I . . . 1 2 3 4 5 6 7 8 9 10 11
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If with 10 dimensions most data live in its 1024 corners, again,
how do you do find your nearest neighbors?!



Curse of Dimensionality (3)

To avoid overfitting, learning algorithms impose enough a priori
structure (regularization)

Manifold hypothesis:
Real data—text, sounds, images—often live in a portion of the
RD space that is effectively smaller than D (manifold learning)



Curse of Dimensionality (4)

. . . kittens seem to like living on a small manifold!
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Thank you for your patience. . .


