Machine Learning for Economists: Part 1 – Curse of Dimensionality

Michal Andrle International Monetary Fund

> Washington, D.C., October, 2018

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The views expressed herein are those of the authors and should not be attributed to the International Monetary Fund, its Executive Board, or its management.

CURSE OF DIMENSIONALITY

Curse of Dimensionality (1)

As number of dimensions in the problem increases, things get less intuitive...

1. Overfitting issues

With enough dimensions, almost everybody is an outlier... Prob(you=female,you=Greek,you=play harp, you=IMF econ) = ?

2. Computational issues

Curse of dimensionality can make the **BIG DATA** often quite **SMALL**, as the effective no. of data points for some cases is small

A few things are common, most things are rare (language, movie ratings, ...)

Curse of Dimensionality (1b)

k-Nearest Neighbor modeling is flexible and can work really well in low-dimensional problems...

It can break down in high dimensions.

Your nearest neighbor can be on the opposite side of spectrum along some dimensions...

Nearest Neighbor Distance Ranking by Dimension

Curse of Dimensionality (2)

If $N_1 = 20$ is **dense** for d = 1, you need $N_2 = 400$, $N_3 = 8000$,

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Curse of Dimensionality (3a)

Searching for a nearest neighbor in uniformly dist. d-dim unit hypercube?

With 10 dimensions, to find 10% of nearest neighbors, you must "travel" through 80% of the cube's edges... Not very **local**, is it?

Follows Hastie et al. 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Curse of Dimensionality (3b)

Our intuition betrays us tremendously in high-dimensions!

For a high-dim unit-radius sphere:

- Almost all data live in the corners of the hyper cube
- Almost all volume of high-dim sphere is contained in a thin slice
- There is essentially no interior volume
- As the number of dim increases, the volume of the sphere goes to zero

. . .

If with 10 dimensions most data live in its 1024 corners, again, how do you do find your **nearest neighbors**?!

Curse of Dimensionality (3)

To avoid overfitting, learning algorithms impose enough a priori structure (**regularization**)

Manifold hypothesis:

Real data—text, sounds, images—often live in a portion of the R^D space that is effectively smaller than D (manifold learning)

(日) (日) (日) (日) (日) (日) (日)

Curse of Dimensionality (4)

... kittens seem to like living on a small manifold!

Thank you for your patience...

(ロ) (型) (E) (E) (E) (O)(()