Globally-Consistent Risk Assessment

International Monetary Fund (IMF)

Michal Andrle (WHD/NB) & Ben Hunt (RES/EM)

The views expressed herein are those of the author and should not be attributed to the International Monetary Fund, its Executive Board, or its management.

WHAT we do...

- Stochastic simulations with big multi-country models
- Applications:
 - A. Analysis of alternative polices
 - B. Globally-consistent risk assessment

Applications

- Fiscal rules in the euro area [Andrle et al. 2015]
- Cyclical fiscal rules with the ZLB [IMF WEO, April 2020]

Applications

 Risk Assessment of Canada's Debt/GDP projection [Canada's Article-IV, 2021]

• Global Risk Assessment for the IMF WEO [prob of recession, etc.]

Table 1: Probability of World GDP Growth of less than 2.5 Percent

Assessment*	Full sample: 1962+	Smaller sample: 1992+				
October 2019	8.9	7.5				
April 2019	7.8	5.9				
October 2018	7.6	5.7				

Note: * pseudo real-time using the assumptions in this paper and vintage IMF WEO data

Sources: Statistics Canada and IMF staff calculations.

WHY we do that...

- Need a realistic risk assessment for the global economy's key macro variables [#countries x #variables]
- Very hard to do using non-structural or non-parametric models
- Wanted something "agnostic"
- Complements "Growth-at-Risk" analysis

What is the GOAL?

- "Objective" realistic stochastic simulations with the model The goal is to let the past and the model to challenge staffs' view.
- "Subjective" extra information available, condition on its distribution [distribution of an extra constraint] [Waggoner (1999) "soft tunes" + System Priors (Andrle at al) + integrate NTF models (Benes et al.)].

Baseline projection is always "judgmental" and conditioned on staffs' views. Place it within the predictive distribution.

> It's important not to fool oneself by "double" counting the risk by moving

Key steps

- 1. Solution techniques & sampling speed
- 2. Shock Estimation
- 3. Drawing from the distribution of shocks

4. ...

Solution Techniques

Solving Big Nonlinear Global Models

• Used with IMF's GIMF, G20mod/FSGM, and GPM

• Fully non-linear

- A version of stack-time algorithm (nonlinear, ignores Jensen inequality)
- Stoch. simulations in parallel (20+ workers, when the IMF sleeps...)

"Path-linearized"

• Linear combination of non-linear IRFs, with the ELB constraint

Path-Linearized Solution

- Simulate IRFs for **R** shocks with **T** periods using the non-linear model in advance...
- Select K outcome variables of interest out of N model variables
 N >> K, from thousands to dozens...
- Create the "cube" a [K x T x R] matrix of the IRFS to represent the model

The "CUBE" – [K x T x R]

Path-Linearized Solution (a)

The Effective Lower Bound (ELB)*

- The path-linearized simulation enforces the "ELB"
- A "shocks" approach
 - Designate a "scenario/shock" to deploy should the rates breach the ELB. Uses "multiplier" matrix. *Iterative, converges quickly*
 - Using the difference between a demand shock with and without the ELB using a fully nonlinear solution, or simply "policy shock", ...
 - Can be used also with "anticipated" shocks [e.g. 2-year rolling...]

* Works for other constrained variables too (e.g. if debt-to-GDP limit, trigger a negative govt consumption shock, etc...)

Shock Estimation

Shock Estimation

- Process the data, focus on a subset of shocks (N = #countries x shocks + global shocks)
- Invert the [non]-linear model using the available data (feasible both linear and non-linear)
- Distribution-free estimate

		1	2	2 3	4	5	6	7	8	9	10	 Т
Country A	Shock #1											
	Shock #2											
Country B	Shock #1											
	Shock #2											
Global	Shock #1											
	Shock #2											

Sampling: "Bootstrap with Jitter"

- Use the [N x T] shock matrix E to estimate the shock distribution and sample from it...
- Effectively a "bootstrap with jitter"
- Resampling columns + RANDN(0, **H**)

Why "Jitter"?

- G20mod/FSGM is an annual model T can be small...
- Using a [N x T] shock matrix E, we estimate a kernel-density estimate (KDE), using a Gaussian kernel N(0, H) {H regularized bandwidth matrix}
- Sampling from the kernel-density distribution?
 - 1. With a probability **p**, pick a data point **X** (a col vector from E[:,i])
 - 2. Add a draw from N(0,H) "kernel" to **X**

Sampling – Blocks & Weights

Shocks organization after identification

Sampling – Blocks

Shocks organization after identification

World Economic Outlook (WEO) horizon is 5 Years Blocks to reflect time-dependence among shocks 🛞

Sampling – Weights

Shocks organization after identification

Sampling – Weights

Shocks organization after identification

Each period is be assigned its "**weight**", reflecting the probability of being drawn

Weights

- We use weights to select sample size, "kill" time periods, pick regimes, and **reflect the current state of the global economy**
- Most commonly:
 - a) Uniform weights for "unconditional distributions"
 - b) State-dependent weights forecast risk assessment

State-Dependent Weights

- Weights reflect the similarity between the current state of the economy, X, and each previous period... ~ "nearest neighbors"
- X can be **univariate** [y(t)] or **multi-variate** [y(t), y(t-1)]

- Similarity/distance metrics:
 - **Cosine** similarity, Euclidian, shape-based similarity measures

Models in a Spreadsheet...?

- Most of the linear computations mentioned above have been also implemented in a standalone MS Excel sheet for technical assistance (TA) purposes
- Simulates models, "flips" endogenous and exogenous variables, provides shock decompositions, runs stochastic simulations, ...
- And more...

Models in a Spreadsheet...?

👻 💛 Format	Painter						,	· ·			Formatting		CHARTS:	c D Deviation	ғ с н т from Baseline	JKLM	N O P Q R	S T U V
Clipboard	L2	Font	L7		Alig	gnment		F <u>⊿</u>	Number	L7	d		This sheet needs	to be adjusted to refl	ect variables in your model.	Non	ninal GDP	Bool Cons
G7 -	: × ✓ B	f _x C	D	E	F	G	н	I	J	К	L N		↓ 3 3 2 0 1	12 10 08 0.5	Keal GDP			
1 SHOCK	SIMULAI	LON		. (column	P) and m	reviding e	cho de volu	ue (celumen		ovido vo	luce for secu		2 3 4	0.4 -		0.2		02 -
RUN 3	SAVE	Shock Decomp	poown men	u (column	i b) and p	roviding a	SHOCK Valu	ie (column	s D-) or pro	ovide va	nues for assu		5 6 7 8 9	0.0 1 2 3 4 5	6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 Alternative Scenario	0.0 1 2 3 4 5 6 7	8 9 10 11 12 13 14 15 16 17 18 19 20 Alternative Scenario	0.0 1 2 3 4 5 6 7 8 9
4	Shock	Variable	1	2	3	4	5	6	7	8	9	🗸 🞺 Form	at Painter	DIU	· 🖿 · 🗠 · 🗛 ·	= = = =	k	
5 11	NTMP1	INT_USA	0.0	0.0	0.0	0.0						Clipboard			Font 🕠	Align	me	Real Impo
6 C 7 8	DEMAND	GDP_R_USA	1.0	1.0	1.0	1.0						B3 •	· : ×	✓ f _x	Unemployment Rate			50 40 30 20
9 10 11 12								MUP-F Weclome		2 3 4 Select var	A iable to de	ecompose:	B Unemploymen	nt Rate	9 10 11 12 13 14 15 16 17 18 19 20 Jtemative Scenario	10 10 12 34 5 7 8 9 -20 -10 -10 -10 -10 -10 -10 -10 -1		
13 14 15 16 17								MUP Team: Michal Andrie, Ivo Krznar,			5 6 7 Shock Decomposition: Unemployment Rate 9 0.05					9 10 11 12 13 14 15 16 17 18 19 20	03 02 01	
												11 12 -0.05	-					0.0 1 2 3 4 5 6 7 8 9

Extensions:

- Improved shock estimation [faster, regularized]
- Improved sampling
- Estimating the "hidden tail" for climate change applications

Problems:

- Household's and firms SHOULD KNOW about the crosscorrelation patterns in the shocks, regimes, or weights
- Shocks are not "structural"...

THANK YOU

Contact Info:

mandrle@imf.org