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I. INTRODUCTION

Economic models can be stochastically singular when the number of structural economic
shocks is smaller than the number of the variables the model uses for identification of these
shocks.

It may be realistic to assume that a small number of ‘structural’ shocks is causing most vari-
ation in economic data, while a myriad of other shocks contribute to relatively small pro-
portion of data variation in the course of the business cycle. Andrle and Brůha (2013), for
instance, point out striking commonality among real and nominal macroeconomic variables
in OECD countries. At business-cycle frequencies, one dynamic factor explains up to 80% of
economic fluctuations in consumption, investment, interest rates, inflation, and other macro-
economic variables.

Real-world data, however, are never stochastically singular, i.e. they do not have singular
spectral density. Far from singularity, real-world data may be contaminated by measure-
ment errors and omissions. If the model is stochastically singular, while the data at hand are
not, inevitably the model cannot explain all variation in the data, there will be a residual, an
unexplained part. Still, it is a perfectly valid question to ask how ‘close’ the model gets to the
actual data with the given structure and set of shocks.

In this note, ‘close’ is being defined in a mean-square sense and the path of shocks is esti-
mated that minimizes discrepancy of the model with respect to data, while having minimal
energy (variance). For simplicity, the estimation is translated into an explicit under-determined
least-squares problem, easily solved using the singular value decomposition (SVD). The non-
recursive algorithm is trivial, but not suitable for larger models.

A related approach to estimating singular DSGE models and shock identification is presented
in Andrle (2012), where the model is rotated into a (dynamic) principal component space of
the data. Effectively, the model’s measurements are as many principal components as there
are stochastic shocks in the model. This paper’s approach can be interpreted as mapping both
the model and data observables into a dynamic principal component subspace of the model
itself. An alternative approach to handle singular DSGE models proposed by Canova, Ferroni,
and Mathes (2014), is to select a subset of variables that gives the strongest degree of parame-
ter identification.
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Figure 1. Business Cycle Comovement, USA (1985-2015)
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II. STATE ESTIMATION WITH SINGULAR MODELS

A. Model

It is assumed that the model can be expressed as a linear state-space model and thus the whole
discussion continues only in terms of state-space model. Economics comes in later. The model
can be written as:

Xt = TXt−1 + Ret (1)

Yt = ZXt + Het with et ∼ N(0,Σe), Σe = I (2)

The model can be stochastically singular if the number of shocks, ne = dim(et ) is smaller
than the number of observed variables, ny = dim(Yt ). The assumption Σe = I simplifies the
exposition of the modeling approach with no loss of generality.

The estimation of the state variables and shocks would normally proceed with the Kalman
smoother. In the case when ne < ny, this standard solution is not feasible, unless the observed
data have exactly the dynamic rank equal to ne. Such situation is rare and we will assume that
the process {YO

t } has a stochastic rank equal to ny.

The stochastic process Yt is in general an infinite-order moving-average representation

Yt =
[
Z(I−TL)−1R + H

]
et = D(L)et , (3)

with spectral density given by the expression SY(ω) = 1
2πD(e−iω)ΣeD(e−iω)†. In the case

when ny > ne, the spectrum of the model is singular. For simplicity, we will assume that
unless ny > ne, there are no pathologies in D(L) that would result in stochastic singularity
of the model.

Our analysis is carried out in two related spaces—in time domain and in frequency domain.
There are three equivalent representations of the model: (i) recursive representation in time
domain, (ii) stacked representation in time domain, and (iii) frequency-domain representa-
tion. Each representation may be more feasible for some analysis than the others but they are
equivalent. It is common that most contributions to the literature use the first, time-domain
recursive representation to estimate unobserved structural shocks and compute the likelihood
function using the Kalman filter.
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We will focus on the time-domain stacked representation of the model for state estimation
and structural parameter estimation and link it to the frequency-domain representation later.

It is useful and instructive to rewrite the model into a stacked form, as a function of the initial
state X0 and stochastic shocks, et , only. Denoting Y= [Y′1 Y′2 . . . Y′N ]′ and E= [X0 e′1 . . . e′N ]′,
we c is stated as follows:

Y = A × E, (4)

where the ‘multiplier’ matrix A is clearly given by the structure of the model and the values
of T, Z, R and H . The dimension of A is (nyN ) × (ne N + nx). Further, it is trivial to see that
the structure of A is

A =



ZT | ZR + H 0 0 0 . . . 0
ZT2 | ZTR ZR + H 0 0 . . . 0
ZT3 | ZT2R ZTR ZR + H 0 . . . 0
. . . | . . . . . . . . . . . . . . . . . .

ZTN | ZTN−1R . . . . . . . . . . . . ZR + H


= [O H ] (5)

For cases where the model is stochastically singular, some additional care is needed when
handling the estimate of the initial state. First, it is important to re-scale the estimated initial
state, so the estimated vector’s covariance matrix is a unitary matrix, as is the case with the
shocks. Second, the unconditional variance of the state vector, X0, need not to be full rank
and thus only the identified component of the state vector will be estimated.

More specifically, let ΣX be an nx × nx unconditional covariance matrix of the stationary
process X. Let the rank of the matrix be denoted rx and note that this static rank of the model
may differ from the dynamic rank of the model, re = ne. Using a singular-value decomposi-
tion (SVD) of the covariance matrix, ΣX = UX,rSX,rV′

X,r , we can define a new, lower-rank
and rescaled initial state (rx × 1) vector W0 with a unitary covariance matrix and which satis-
fies the mapping

X0 = UX,rS−1/2
X,r =MW0. (6)

The (nx × rx) mapping M transforms the estimated low-rank initial state into the original
model coordinates.
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B. State Estimation

State estimation makes use of equivalence between least-squares, Wiener-Kolmogorov, and
Kalman filtering. After all, the very nature of the Kalman smoother is that it is a recursive and
efficient version of the least squares.

To avoid explicit frequency-domain calculations, the solution stacks time into a static least-
squares problem, which is solved by singular value decomposition. However, frequency-
domain issues can still be explored.

The least-squares problem is formulated using the stacked form of the model (4) and employ-
ing the transformation (6):

min
X0 ,{ε}

Λ =W0W′
0 +

N∑
t=1

[Yt −ZXt] (HH′)−1 [Yt −ZXt]′ (7)

+
N∑

t=1

[Xt −TXt−1] (RR′)−1 [Xt −TXt−1]′ . (8)

It is useful to rewrite the least-squares problem in a stacked form and as a function of the ini-
tial state X0 and stochastic shocks, et , only. Denoting Y= [Y′1 Y′2 . . . Y′N ]′ and E = [W0 e′1 . . . e′N ]′,
the least-squares problem is stated as follows:

E = argmin | |Y−A × E | |, (9)

where the ‘multiplier’ matrix A is clearly given by the structure of the model and the values
of T,Z,R and H. The dimension ofA is (nyN ) × (ne N + rx). It should not be surprising to
realize that the that the structure ofA is

A =



ZTM | ZR + H 0 0 0 . . . 0
ZT2M | ZTR ZR + H 0 0 . . . 0
ZT3M | ZT2R ZTR ZR + H 0 . . . 0
. . . | . . . . . . . . . . . . . . . . . .

ZTN M | ZTN−1R . . . . . . . . . . . . ZR + H


. (10)

The importance of rewriting the model into a simple, albeit possibly large, least-squares prob-
lem is that all the modern methods for solving large-scale least-square problems are avail-
able, including various forms of regularization and penalized estimation, or natures of the
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| | . | | norm. Most notably, an extension of the form

E = argmin | |Y−A × E | | + λP (E), (11)

where P (E) is a penalty term with a flexible functional form.

1. Under-determined System

In the case when ny > ne, the least-square problem is under-determined and standard solutions
do not apply. Fortunately, solution of such a system is a standard and well-understood prob-
lem in linear algebra. A common way of solving the problem is an application of the ‘queen’
of matrix transformations, the singular value decomposition (SVD).

The solution to the least-squares problem is not unique. It is chosen is such that the energy
of the shocks is the smallest among those solution that provide identical mean-square error
to the system. Since the problem is under-determined, the ‘fitted’ values of observables do
not equal to observed data, unless in the very rare case of stochastically singular input data.
Hence, there will be ‘errors’, or residuals.

The solution can be written in terms of the SVD transformation of the multiplier matrixA as
follows, following standard results in linear algebra.1.

A = U S V′ =
[
Ur U0

] Sr 0
0 0


V′

r

V0′

 = Ur Sr V
′

r =

r∑
i=1

uiσiv
′

i (12)

Ê = VrS−1
r U′rY = ΨY, (13)

where r is the ‘effective rank’ of the multiplier matrix used for the estimation of shocks. In
principle, the effective rank is chosen exactly to match the estimated rank of the multiplier
matrix. This way, all the equations of the model are respected in their original form.

After the estimation of Ê, it is needed to unstack the vector and feed the shocks through the
original model to obtain the estimates of unobserved states {X} and the fit of the observed
data. For a stochastically singular model, the fit will not be perfect, of course.

(a) Relationship to Other Methods The solution method uses efficiently the model struc-
ture and the rank of the system to compute a minimum norm solution but can be related to

1See e.g. Strang (200x) for introduction and Golub and van Loan (1997) for a more advanced treatment
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other methods. Andrle (2012) suggest to use principal components (PCA) or dynamic prin-
cipal component (DPCA) analysis to estimate shocks and parameters of stochastically singu-
lar models. In its simplest form, let’s assume that the observed data covariance matrix is an
(ny × ny) matrix SY, while the model-implied covariance matrix of the data is ΣY, consistent
with (1)–(2). Given the measurement equation Yt = ZXt + Het , one can devise a new, lower-
dimensional vector of variables Ft , which consists of ‘factors’ created from the observed
data as Ft = P × Yt . The whole model is then mapped into a new space of coordinates as
Ft = PZXt + PHet = Z̃Xt + H̃et .

2 Andrle (2012) originally proposed to create the projec-
tion matrix P using the principal component analysis of the empirical covariance matrix of
the data, SY, in order to subject the model to empirical stylized facts and to make it perform
in the data space. However, it is possible to form the projection matrix also using the model-
implied covariance matrix, ΣY, for given set of structural parameters.

The ‘SVD filter’ solution proposed in this text is related to the principal component method
hinted above and can easily be used jointly with it to pre-whiten the data, focusing on the
explanation of only key variance in the data. The SVD filter is, in principle, another instance
of principal components itself. The vector of stacked observed data Y is mapped into a lower-
dimensional space using the projection matrix associated with principal components, Ỹ =
U′

rY and a new model is formulated for the solution, Ỹ = U′

rAE = SrV′

rE. The intuition
behind the transformation of the observed data into a new coordinate space will prove use-
ful later when the likelihood function of the stochastically singular model is introduced.

2. Conditioning of the State Estimation

Conditioning of the least squares problem is tighly related to sensitivity of model to rounding
errors, errors in the measured inputs and to weakly identified subspaces of the model.

Assume, for instance, that the measured data Y is now defined as true data and some ‘noise’,
Y = Ytrue + εW . Using the singular value decomposition, we can rewrite the solution to the
least squares problem as

Ê =

r∑
i=1

u′

i Ytrue

σi
vi + ε

r∑
i=1

u′

iW

σi
vi , (14)

where the solution can be seen as a function of the ‘true’, correctly measured data and mea-
surement errors, or noise. Now, if the vectorW corresponds to (roughly) uncorrelated white

2In case of the dynamic principal components, the mapping is not static but a two-sided polynomial and the
approach is executed in the frequency domain but the intuition is similar.
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noise, the the parts of the vector in the direction of the left-singular vectors ofA will stay
roughly constant and thus the terms u′

iW will not vary too much with i. As such, the second
term can blow up with increasing i as the singular values get sufficiently small.

In order to lessen the effect of the potential noisy data, one can use a truncated problem and
use smaller number of singular values than is the (approximate) rank of the problem, i.e. k <

r . The truncated solution is a specific form of regularization approach out of many that are
known for the least-squares problems, together with Tikhonov regularization, for instance,
see ?) and the Appendix of this paper. While not following the problem in detail and focusing
on the intuition, it is interesting to note that one way of deciding on the size of problem is to
inspect so called discrete Piccard condition, which requires the coefficients |u′

i Y| to decay
faster on average than the corresponding singular values.

Truncated solution is also one of the form of the spectral filtering and removing components
of the solution associated with very low singular values corresponds to making the solution
less sensitive to high-frequency variations in the data.

C. Likelihood Function and Parameter Estimation

Up to this point it has been assumed that the coefficients of the underlying model are given.
However, it is rather straightforward to develop a likelihood of the state-space form of the
model even with the stochastic singularity.

Let’s assume the model is already cast into a stacked linear form as follows:

Y = A E = Aθ E, (15)

where the multiplier matrix Aθ is now associated with the subscript θ to indicate the depen-
dence of the reduced-form coefficients on the structural coefficients. The goal now is to carry
out statistical inference about the structural parameters θ. Given the Gaussian structure of
components in E, Y ∼N(µ,SY), where SY =A SE A′.3 In the case where rank(A) =max{r, p}
and thus full-rank covariance matrix SY the likelihood function is

L = −N × T/2 + log2π + log |S−1
Y | −

1
2

Y′S−1
Y Y, (16)

which is easy to evaluate for small and medium-size models.

3This point has been noticed also by Schmitt-Grohe and Uribe (2013)
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In the case when the dynamic model, and thus the coveriance matrix SY is singular, the inverse
does not exists and the likelihood function is ill-defined. However, a solution with a clear and
economically meaningful intuition is available. A solution that at the same time leads to a
developtment of the singular multivariate Normal (SMN) distribution.

The intuition behind the simple algebra is similar to Andrle (2012), where the observations
are mapped into a new sub-space, defined by the principal componets of the data. In this case,
both the model and the data are mapped into a subspace defined by the regular portion of
the model, as embodied in the column-rank of A. Using the singular value decomposition
U S V′ = A, we can define a set of new, transformed observables Ỹ = U′rY. Essentially, the
model has been mapped into a new space of the first r principal components of the model.

The new likelihood is thus proportional to

LU ∝ log |S̃−1
Y | −

1
2

Ỹ′S̃−1
Y Ỹ, (17)

∝ log |Λ−1
r | −

1
2

trace{YY′S+
Y}. (18)

The three equivalent forms of the likelihood function exist due to several important relation-
ships between the SMN, SVD, and thecoordinate transformation. The last expression is the
singular multivariate Normal distribution, see Rao (1973), where Λ are the ordered, non-zero
eigenvalues of SY and S+

Y is the Moore-Penrose inverse, or pseudo inverse, of the singular
covariance matrix.

III. EXAMPLE

A. Simple Dynamic Semi-Structural Model

The model follows a typical New-Keynesian closed economy model with price rigidities.
Inflation, πt , is driven by output in excess of its trend or equilibrium value, using a forward-
looking Phillips curve. The output cycle, ŷ, is determined by an output equation derived from
consumption smoothing and is interest sensitive. The monetary policy authority sets the short-
term nominal interest rate, it , via an inflation-forecast based rule, weighting the expected
deviation of year-on-year inflation from its target and the output gap.
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ŷt = α1yt+1|t +α2yt−1 +α3(rrt − rr t ) + εyt (19)

πc
t = λ1π

c
t+1|t + (1− λ1)πc

t−1 + λ2 ŷt + επt (20)

it = γ1it−1 + (1− γ1) ×
[
(rr t + πt ) +γ2(πy/yt+3|t − πt+3) +γ3yt

]
+ εi

t (21)

πt = πc
t + επ,sr

t (22)

rrt = it − πt+1|t (23)

(24)

Despite its small size and simplicity, the model can display nontrivial dynamics in response to
structural shocks. It is driven by eight parameters θ = {α1,2,3, λ1,2, ρi , γ1,2,3} and four standard
deviations for structural shocks. Inflation target is assumed to be exogenous and for the pur-
poses of the paper is kept constant. The results for the model will be presented in deviation
from the steady-state values.

B. State Estimation with the Model

Given the model specification, see the appendix, the goal is to use three observed variables,
the interest rate, it , headline inflation, πt , and the output (gap), ŷt , to estimate four structural
shocks, {εyt , ε

π
t , ε

π
t ε

π,sr
t }. The true model is not stochastically singular, on the contrary, the

number of than is the number of observables.

State estimation with the model can proceed using the Kalman smoother, as it is standard. All
results will be compared with the Kalman smoother as a natural benchmark. The SVD filter
for non-singular model with out use of any regularization replicates the results of the Kalman
smoother exactly in the test case; an indespensible test.

To illustrate the potential use of the SVD filter, shock estimation is carried out with the stochas-
tically singular model, misspecified model, and with observed data contaminated with a mea-
surement noise.

(a) Estimating with the demand shocks only Let’s assume that the resercher uses a theory
that does not take a stand on detailed specification of more but one structural shock. In our
model it is the demand shock, for proponents of the real business cycle theory it could be a
productivity shock, for instance. The SVD filter, without any further setup or estimation of
measurement errors will estimate the shock and leave residuals for series it cannot match.
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(b) Estimating with the cost-push shock only This case is, surely, is a purposefuly arti-
ficial exercise just to illustrate the properties of the SVD filtering. The model is clearly mis-
specified as the cost-push shock contributes only a small portion of the variance in the observed
data and is at odds with the strong and positive unconditional correlation between output and
inflation in the model. The results demonstrate that the filter can match decently two out of
three observed variables: inflation and to smaller extent the interest rate. But it does–as it
should–do a rather poor job in explaing the output.

(c) Minor filter misspecification The following exercise focuses on a rather minor form of
misspecification, which is also relevant in the presence of measurement noise. The baseline
data-generating process is modified such that the demand shock and the short-term cost push
shock affecting headline inflation are used to generate the data, with the policy shock playing
negligible role just to make sure the Kalman smoother operates well. The analyst will, how-
ever, specify his model as a function of the policy shock, demand shock, and the persistent
cost push shock.

(d) Noise Contamination

1. Varying the rank of the SVD-filter

The rank of the filter with one shock and the initial conditions, can be further lowered, to
explore the frequency-domain implications of the SVD filter.
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Figure 2. Noisy data, structural shocks, and estimates
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Figure 3. Effects of true vs. estimated demand shock
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IV. CONCLUSION

When there is a desire to use a model with small number of shocks and test it against larger
number of observables, it is feasible to estimate the shocks by least squares. This short note
introduced a simple filter that can easily handle stochastically singular models, as well as reg-
ular ones.

The benefit of using the ‘SVD filter’ is that it can be used to enhance the robustness to mea-
surement errors and allows to test the hypothesis of only few relevant shocks. On the other
hand, in case the chosen shock is severely misspecified –or altogether missing in the data– the
application of the reduced-rank filter, as well as any other filter is dangerous and misleading.
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