SYSTEM PRIORS

Formulating priors about DSGE Models' System Properties

Michal Andrle and Jaromir Benes¹ IMF, Research Dept.

Computing in Economics and Finance, July 2013, Vancouver, CA

¹The views expressed herein are those of the author and should not be attributed to the International Monetary Fund, its Executive Board, or its management.

Outline of the Talk

Definition

Motivation for system priors

Unintended consequences of marginal priors

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Intuitive nature of system priors

System priors

- Candidates for system priors
- Implementation

Illustrative experiment

(inducing parameter priors with one system prior...)

System Priors: Definition & Examples

System priors:

Prior views about **system properties** of the model, which are complex function of all underlying parameters

Examples:

- Sacrifice ratio after a permanent disinflation
- What is an upper bound on inflation deviating from the target after a persistent demand shock?
- What is a maximum share of variance of a measurement error for a variable X

▶ ...

System priors are very explicit, transparent, and can relate to any of model's properties.

Dogmatic 'system prior'?: Blanchard-Kahn stability condition!

System Priors: Motivation (A)

- Eliciting priors for parameters of the model can be hard
 - Are the parameters truly 'structural'? E.g. Calvo parameter versus the slope of the Phillips curve...
 - Can we take on board evidence from micro-studies?
 - It makes hardly any sense to transfer parameter priors from one model to another
- Independent marginal priors have unintended consequences! Have you checked?
 - What is the prior distribution of an IRF?
 - What is the prior distribution of the cross-correlation between variables X and Y?
 - Can the response of X to Y be negative a priori at all?

System Priors: Motivation (B)

- Top Down vs. Bottom Up Specification...
 - Calibrated models used top down specification
 - Top down priors on system behavior of the model
 - Top down approach allows to implement priors that make sense, even if data are uninformative

 System priors induce cross-dependence among parameters

- A prior on a model feature is consistent with a set of parameterizations (iso-parametric path)
- Just one system prior may induce a joint distribution prior across multiple structural parameters

(ロ) (同) (三) (三) (三) (○) (○)

Problems with 'standard DSGE' priors (A)

- Assumption of independent marginal priors is unrealistic
- Reporting marginal parameter prior and posterior distribution is not informative enough
- Independent priors induce unintended consequences for the prior distribution of model features (IRFs, moments, conditional moments, etc.)
- Independent marginal priors are not transparent. Looking at them gives one no clue about a priori model behavior

 No or very little economics of adjustment-costs, etc. priors

Problems with 'standard DSGE' priors (B)

Prior-predictive analysis needed to reveal the effects of priors on key hypothesis

- What is the priori distribution of your monetary policy IRF?
- Could the response of labor to a TFP be positive in your model at all? Do priors tilt it that way?

Marginal independent priors give little control over priors!

- Too diffuse marginals imply loose control on a system feature of the model...
- Too tight marginals give little chance for data to speak...

(ロ) (同) (三) (三) (三) (○) (○)

Marginal priors are too blunt for economics priors

Candidate System Priors

System priors:

Anything useful feature of the model: "smell tests"

Candidate system priors:

- Steady-state values of model variables
- Conditional or unconditional moments of the model
- Prominent policy scenarios

(disinflation, delayed policy response, ...)

- Characteristics of IRFs (peaks, cummulatives, ...)
- Frequency response function and spectral characteristics

▶ ...

With system priors, it is fine to have informative, economic priors!

Relationship to the Literature

- Faust (2009) and Gupta and Faust (2011) point at unintended consequences of 'standard' marginal independent priors using prior-predictive analysis.
- Geweke (2010) discusses prior-predictive analysis at lengths.
- Canova and Sala (2010) point out identification problems of DSGE models
- Fernandez-Villaverde and Rubio-Ramirez (2008): How Structural are Structural Parameters?
- Work of E.T. Jaynes on priors and max-ent priors, 'moment approach' to prior selection in J.O. Berger (1985)

System Priors: Implementation

Posterior distribution: priors get updated using likelihood

Composite prior $\tilde{p}(\theta|...)$ includes:

- (i) marginal independent priors $p_m(\theta|\mathcal{M})$
- (ii) system priors $p_{\mathcal{S}}(\theta|\mathcal{M})$

Bayesian updating:

$$\begin{array}{ll} p(\theta|Y^o,Z^o,\mathcal{M}) & \propto & L(Y^o|\theta,\mathcal{M}) \times p_S(Z^o|\theta,\mathcal{M}) \times p_m(\theta|\mathcal{M}) \\ & \propto & L(Y^o|\theta,\mathcal{M}) \times \tilde{p}(\theta|Z^o,h,\mathcal{M}). \end{array}$$

General principle: estimation with side constraints...

(e.g. Bayesian Simulated Method of Moments with System Priors, Andrle (IMF,2012))

System Priors: Computation

Loss function with three components:

- (i) likelihood function (or other criterion function) $L(Y^{O}|\theta, \mathcal{M})$
- (ii) marginal independent priors $p_m(\theta|\mathcal{M})$
- (iii) system priors $p_S(\theta|\mathcal{M})$

Posterior sampling:

- Simple extension of standard MCMC, e.g. RW-Metropolis
- To sample composite prior, just switch-off the likelihood!
- To sample just the composite prior, adaptive importance sampling is feasible (massively parallel)

(日) (日) (日) (日) (日) (日) (日)

System Priors: Example (A)

Simple New-Keynesian "gap" model used for illustration:

$$\hat{y}_t = \beta_1 y_{t+1|t} + \beta_2 y_{t-1} + \beta_3 (rr_t - \overline{rr}_t) + \varepsilon_t^{\gamma}$$
(1)

$$\pi_t^c = \lambda_1 \pi_{t+1|t}^c + (1 - \lambda_1) \pi_{t-1}^c + \lambda_2 \hat{y}_t + \varepsilon_t^\pi$$
⁽²⁾

$$i_t = \gamma_1 i_{t-1} + (1 - \gamma_1) \times \left[(\overline{ir}_t + \overline{\pi}_t) + \gamma_2 (\pi_{t+3|t}^{\gamma/\gamma} - \overline{\pi}_{t+3}) + \gamma_3 y_t \right] + \varepsilon_t^i$$
(3)

$$rr_t = i_t - \pi_{t+1|t} \tag{4}$$

$$\overline{\pi}_t = \overline{\pi}_{t-1} + \varepsilon_t^{\overline{\pi}} \tag{5}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

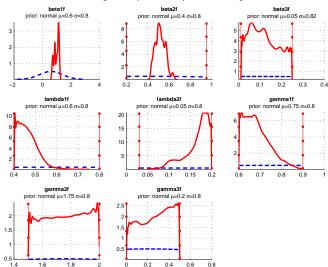
Sacrifice ratio:

Cumulative loss of output after a permanent disinflation by 1 ppt.

System Priors: Example (B)

Experiment:

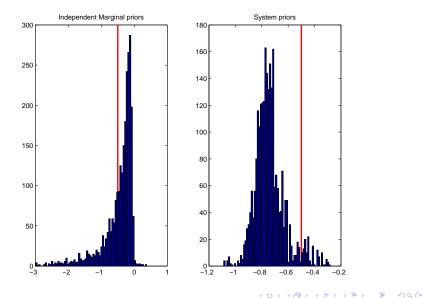
If the sacrifice ratio is assumed to be distributed as N(0.8,0.05), how do parameter priors change?


Specifically:

- System prior induces individual parameters priors joint distribution
- What parameters get affected?
- How does the iso-parametric path look like?

Note:

- Sacrifice-ratio prior does not breach the likelihood principle
- Likelihood is usually not informative about permanent disinflation response
- Cross-country evidence on disinflation available...


System Priors: Example (C-1: diffuse priors)

Priors: Marginal-Independent vs. System Priors Marginals

System Priors: Example (prior and posterior)

Sacrifice ratio: prior and system prior

System Priors: Usage & Toolbox

System priors are easy to implement:

- Just one more function to evaluate...
- IRIS Toolbox (www.iris-toolbox.com) features a subset of system priors

Implementation tips:

- Use objects and function handles to build the interface
- Employ switches for components of the loss function (loglik, sprior, mprior)

(ロ) (同) (三) (三) (三) (○) (○)

Pass a solved model to a system prior routine

Conclusions

- System priors are the economic way of using priors
- System priors solve many problems of marginal independent priors
- System priors induce individual parameter priors
- System priors encompass 'standard' way of doing things

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Thank you for your patience!