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Abstract

Economists use dynamic economic models to test theories and estimate underlying

structural economic shocks to interpret historical developments. An important starting

point in the model formulation process is that structural shocks are uncorrelated random

disturbances. The model properties – impulse response function, spectrum, or forecast

error variance decomposition– implicitly assume this essential property of shocks. Yet,

the actually estimated ‘structural’ shocks are strongly correlated as a rule rather than

exception. Correlated structural shocks are a sign of misspecification. The paper pro-

poses a new method for estimating structural shocks that are uncorrelated and makes a

distinction between structural shocks and residuals. The framework also allows to deal

easily with a possible stochastic singularity of the model. The paper motivates the need

for uncorrelated structural shocks with a discussion of stylized facts and some common

sources and symptoms of model misspecification. Misspecified models will ‘fit’ the data

very poorly with orthogonal shocks.

Keywords: structural shocks; orthogonality; stochastic singularity; DSGE; misspecification
JEL:
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I. INTRODUCTION

The key presumption of most dynamic economic models is that structural shocks should
not be correlated among themselves. The assumption of uncorrelated structural shocks
is always a point of departure when the models are formulated. Most of the properties of
the model –impulse response function, spectral density, forecast error variance decomposi-
tion, or cross-correlation statistics – depend on this fundamental assumption. However, in
the process of estimation of structural shocks using statistical techniques, like the celebrated
Kalman filter, it is a rule rather than exception that the uncovered shocks are strongly corre-
lated. Although the signs of shocks being cross-correlated can be easily seen in many empir-
ical papers, the issue is all but ignored. This paper identifies the problem associated with cor-
related shocks as a model misspecification and suggest an alternative way of structural shocks
estimation.

Inspecting the structural shocks is important since they allow researchers to interpret
historical developments and test their theories. Yet, our models are misspecified. We do
not know how many genuine ‘structural’ shocks are needed to validate our theoretical mod-
els, nor we are sure what these shocks are. Economists must work with misspecified mod-
els, because there are no other models. A distinction between structural shocks and residuals
is thus useful. In our case it is just the structural shocks that are required to be uncorrelated,
while residuals become basis for a measure of ‘fit’ or misspecification of the model.

The paper puts forth a novel approach for estimating structural shocks with an orthonor-
mality constraint and weak constraints on number of shocks in the model. By restricting
the shocks to be uncorrelated–with a leeway to choose a degree– the structural shocks are
estimated such that the restriction is specified and the distance of the model from observed
data is minimized. However, due to orthonormality restriction even in stochastically regu-
lar models the model may not be able to explain total variance of the observed data, leaving
some residuals. Severely misspecified model will ‘fit’ the data very poorly, leading to large
residuals. There is also no restriction on the number of structural shocks to be included in the
model in principle with the new technique, after residuals are accepted as fact of live and part
of the result. Au contraire, the analysis of residuals has always been a hallmark of misspecifi-
cation tests in econometrics!

Estimating uncorrelated structural shocks helps to identify quickly the degree of model
misspecification. The literature and the results of the paper suggest strong cross-correlation
among macroeconomic variables in most countries, which DSGE models have difficulties
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to cope with. Strong commonalities also stand behind the recent success of the dynamic fac-
tor models in forecasting and explaining the data. With a misspecified structural model this
easily results in correlated ‘structural’ shocks, which is illustrated using a New-Keynesian
DSGE models following the important contributions by Justiniano, Primiceri, and Tambalotti
(2010)[JPT], Christiano, Trabandt, and Walentin (2011) [CTW], or Christiano, Motto, and
Rostagno (2014) [CMR], among others, and that is typical for most New Keynesian DSGE
models as we discuss below. The fit of these models breaks down when the condition of uncor-
related structural shocks is applied. The models have no structural shock that would explain a
strong, positive, and contemporaneous co-movement of consumption and investment, among
other issues. The issue is extremely common with DSGE models, where the positive co-
movement of output, consumption, investment, and hours is hard to achieve, while being
present in the data. Most DSGE models are failing the ‘test of the Adelmans’ (Adelman and
Adelman, 1959) as explained below.

In comparison with other areas of macroeconomics, the nature of structural shocks in
DSGE models looks sometimes like a complete opposite. Unlike structural vector autore-
gressions (SVARs) or structural dynamic factor models (SDFM), the identification of struc-
tural shocks in DSGE models spurs directly from the behavioral and accounting structure of
the general equilibrium model itself. This is not the case with SVARs or SDFMs, which are
simply just a representation of the auto-covariance structure of the data in the first place and
structural models only in the second. However, the roles get quickly changed, when a DSGE
model with a priori uncorrelated shocks is applied to data, with possibly severely correlated
estimated structural shocks. Factor models and SVARs, on the other hand base the very iden-
tification of structural shocks on the assumption of no correlation by factoring the covariance
matrix of residuals. Without shocks being orthogonal, there would no identification or mean-
ingful impulse-response analysis.

Computationally, the newly proposed method of shock estimation is straightforward to
implement and applicable both to linear and nonlinear models. It is well known that the
Kalman filter is an ingenuous recursive implementation of a least squares problem. Formally,
this paper formulates the structural shocks estimation as an explicit least squares problem
which is solved using the singular value decomposition (SVD) and thus easily accommodates
stochastic singularity. Importantly, the least-squares problem is augmented by the penalty for
correlated residuals which enables researches to vary the tightness of the assumption. The
problem is close to the ‘orthogonal Procrustes’ problem in linear algebra, though the solution
of ‘Procrustes’ does not apply.
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II. STRUCTURAL SHOCKS. . . OR NOT

The importance of structural shocks being ‘truly structural’ is huge and the issue has
been debated in the literature. Often the issue is debated jointly with the structural nature of
models’ parameters. Both parameters and shocks are obviously artificial constructs, a theory
to be reconciled with the real world.

TBW

Should structural shocks really be uncorrelated? In this paper it is argued that they should.
Not only is the assumption of uncorrelated structural shocks at the very start of the model for-
mulation, it also is the crucial identification requirement for the shock being meaningful. If
two shocks go hand in hand, then it is simply just one shocks and needs to be treated like it.
A structural mechanism, a theory needs to be developed to find the actual source of variation.
Orthogonality of structural shocks is the key identification principle in econometrics and in
science that allows for counterfactuals and causal inference. Two variables can be systemat-
ically related either because one is causing the other, or they share a common cause, see e.g.
Pearl (2009). Having correlated shocks means confounding.

After all, for many the assumption of uncorrelated shocks is simply obvious. That is why
most economists start with uncorrelated shocks in the formulation of the model in the first
place. Yet all this is quickly resigned upon, when the model is ‘fitted’ to the actual data and
the structural shocks are estimated. Rarely is the covariance structure of the shocks reported
or discussed. Yet, when the model can be reconciled with the data only at cost of correlated
shocks, it is easy to notice in shock decomposition of observed variables and usually in vari-
ance decompositions.

Having correlated structural shocks is always a sign of misspecification but the oppo-
site does not hold. [proof is easy. insert a proof] The greatest empirical failure would not be a
failure to explain the dynamics of the data without any error, but to explain the full dynamics
with severely correlated structural shocks. The sole fact that the shocks are not correlated,
however, does not mean the model is a plausible explanation of the data, unless the struc-
ture and the theory are investigated further. The tests for misspecification in this paper are
in some sense related to the ‘test of Adelmans’, see Adelman and Adelman (1959) and King
and Plosser (1989). The question is – would an analyst tell the model-generated data from the
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actual sample? This, of course, is necessary but not a sufficient condition for the model to be
the ‘right’ one, the useful one.

A. Stylized Facts on Co-Movement and Commonality in Macroeconomic Data

In the U.S. and other OECD countries majority of business cycle fluctuations in macroeconomic
data can be ascribed to just a few sources of dynamics. The premise that only a small
number of sources of fluctuations are responsible for most of the dynamics in the macro-
economic data is the raison d’être for the successful literature on dynamic factor models, see
e.g. Stock and Watson (2002), Forni, Hallin, and Reichlin (2000), or ?. Using hundreds of
mostly monthly data researchers argue there are 2–6 genuine dynamic factors driving most
of the macroeconomic dynamics. It is also worthy of noting that these ‘factors’ are orthogo-
nal by construction. The key idea is the one of the reference cycle as originated by Burns and
Mitchell (1946): macroeconomic series are intimately connected.

Recently Andrle, Brůha, and Solmaz (2014) have extended the factor analysis and demonstrated
that a single dynamic factor dubbed ‘demand’ can explain most of the business cycle.
Using quarterly data for the U.S. and other OECD countries, the authors have shown a just
one dynamic principal component can explain most of the cyclical variations in real and nom-
inal variables. Fig. 1 –borrowed from the above mentioned paper– depicts cyclical compo-
nents of the U.S. selected macroeconomic variables and a portion fitted by first, first two and
first three dynamic principal components since 1980s.1 The factor is labeled as demand, since
it explains both real and nominal variables well, see Fig. 2. It cannot be argued that output,
consumption, investment, or unemployment do not feature a dominant and regular common
cycle. Yet, that is what most DSGE models do and what becomes the reason for seriously cor-
related structural shocks.

For the purpose of the dynamic economic models, the definition of consumption or
investment is often modified. The reason is usually to account for proper treatment of durable
goods consumption or other simplifications of the model. Following Justiniano, Primiceri,
and Tambalotti (2010) Fig. 3 depicts (normalized) cyclical statistics of the U.S. data where
private consumption comprises services and non-durable goods only, with investment defined
as gross private investment and durable consumption goods. Output, consumption, invest-
ment, and hours worked were also adjusted for population growth, see the Appendix for data
source and definitions. Inflation is expressed as a GDP deflator. As can be seen from Fig. 3

1See the results starting from 1950’s in the Appendix.
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the strong co-movement of consumption, output, and investment remain to hold in the trans-
formed data set for the whole sample from 1952:Q1 to 2013:Q4. Further, it is easy to demon-
strate that these data characteristics persist for a wider frequency band than 0–32 and are not a
result of ‘spurious’ filtering, see the Appendix for spectral analysis.2

The factor modeling literature also bears implications for number of structural shocks
and makes a case for stochastic singularity being a virtue. For this reason solutions allow-
ing to have a few but well-thought structural shocks are to be preferred to a proliferation of
‘structural’ shocks lumped into a model just to cope with stochastic singularity. Another
important consequence of the analysis in Andrle, Brůha, and Solmaz (2014) is that when
over 60% of co-movement among a set of variables can be explained by one factor orthog-
onal to others, it is like observing effects of one dominant structural shocks, to which the
actual impulse-response function of the model should be benchmarked. There is no doubt
there are many structural shocks operating on the margin and in specific historical episodes.
The majority of fluctuations, however shares a very predictable co-movement. Have we ever
seen a recession with depressed investment and consumption flat or rebounding?

The strong co-movement of macroeconomic series is obvious also for growth rates of
variables, albeit more affected by high-frequency variations, see Fig. 4. The figure depicts
quarterly growth rates of private consumption (without durables), investment (with durables),
hours worked and output as transformed for the JPT model, normalized to the identical vari-
ance. The comovement is obvious and should alleviate possible criticism of ‘prefiltering’ or
spurious cycles induced by band-pass filtering and spectral measures.3 For instance, the con-
temporaneous correlation of investment and consumption is 0.28 and 0.38 accounting for
one lag.The cross-correlation of consumption, investment, and hours needs to be explained
by a common shock (factor), with constant weights even through the Great Moderation, fol-
lowed by the Great Recession. The co-movement is stable, which is just great. As is clear
from growth and cycles, the least coherence is at very low frequencies (trends) and very high-
frequencies, see Andrle, Brůha, and Solmaz (2014) for discussion.

The results on the factor structure and strong co-movement of macro data imply that to
explain the cycle means to explain the co-movement. Explaining just the dynamics of the
GDP series, thus, is of little to no use unless the behavior of private consumption and invest-

2Note that frequency-specific correlations or ‘filtered’ data are simply a transformation of the raw data. If
applied both to a properly specified model and to data, the result should be identical or similar. Further, ‘spuri-
ous’ effect of statistical filters are a fable as explained, among others, in Pedersen (2001),Kaiser and Maravall
(1999), or Pollock (2014).

3It should be born in mind that first difference operator is also a filter; filter that mitigates trend and cyclical
frequencies, greatly amplifies high-frequency noise and introduces phase-shifts.
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ment is explained with the structural shocks as well. The same hold for cyclical volatility of
output and hours, or unemployment. It is easy to investigate frequency-specific correlations
and spectral characteristics of DSGE models. The statistical structure of dynamic principal
component of the data can become an important test of coherence between the model and the
data and an extension of the ‘test of Adelmans’ as suggested by Andrle (2012).

B. Measures of ‘Fit’ for Dynamic Models

What is the measure of fit of a DSGE model that helps to reveal potential misspecification
of the model?

C. Misspecification – Some Sources and Symptoms

Imposing the assumption of uncorrelated structural shocks creates a distinction between
those and residuals. This paper also makes a distinction between measurement errors and
residuals, despite their similarity and potential to mitigate the identical problem.4 It would
not be reasonable to argue that with the restrictions on shocks to be uncorrelated the model
can fit the data perfectly, after all the models are just a simplification of reality. Yet, this restric-
tion allows not to fit the data, obtain the residuals, and see the model’s distance from the ideal
situation.

TBW

The illustration of the misspecification of explanation of sources the business cycle focuses
on ‘investment shocks’ and ‘risk shocks’ in the recent literature. For instance, Justiniano,
Primiceri, and Tambalotti (2010) put forth the ‘investment shock’, a technology shock in the
production of installed capital, labeled as marginal efficiency of investment shock, as a source

4First, residuals arise when the model is stochastically singular and/or structural shocks are required to be
orthogonal. Second, measurement errors are a broader term used for dealing with high-frequency volatility,
issues of residual seasonality, one-off measures, and importantly with actual errors of measurement. Apart from
some macroeconomic data being prone to revisions, it’s rarely the case that an exact counterpart of the model
variable is observable in literal sense.
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Figure 1. U.S. Cyclical Stylized Facts (post 1985)
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Figure 2. U.S. Nominal Cyclical Stylized Facts (post 1985)
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Figure 3. U.S. Cyclical Stylized Facts (JPT transformations)
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Figure 4. U.S. Growth Stylized Facts (JPT transformations, normalized)
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of the business cycle. Literature has by and large followed their lead in relying on investment-
specific shocks to explain the cycle. Recently, the literature incorporating a financial acceler-
ator due to Bernanke and Gertler (1989); ? (BGG henceforth) points out it’s financial sector
shocks and ‘risk shocks’ (Christiano, Motto, and Rostagno, 2014; Christiano, Trabandt, and
Walentin, 2011) that are more plausible explanation of the cycle and that risk shocks dethrone
the investment-specific shocks. It’s argued below that neither of these shocks seems to be a
realistic candidate for explaining the business cycle.

There are many cases in the literature where the misspecification is easy to spot. To the
best of our knowledge, there is no paper or journal article where both a DSGE model is devel-
oped and cross-correlation of structural shocks is discussed. Yet, the signs of economic mis-
specification and correlated shocks are relatively easily to spot once the stylized facts above
are taken into account. Let’s discuss in detail how a quick look at IRFs, forecast error vari-
ance decomposition, and structural shock decompositions can raise a flag of utter misspecifi-
cation.

1. Impulse-Response Functions

Not being able to find a single impulse-response function where consumption and investment
are strongly positively correlated should raise a red flag. Using the stylized facts on their
positive co-movement, only correlated shocks can be obtained when the model is required to
explain the data dynamics fully and is misspecified. An example of this is problem is (Justini-
ano, Primiceri, and Tambalotti, 2010, Fig. 3, pp. 142) where investment shock boosts invest-
ment by 6%, while depressing private consumption on impact for more than one year, see Fig.
11 in the Appendix. This implies that –given the stylized facts– this shock is not a plausible
explanation of the business cycle, or output for that matter.5

Christiano, Motto, and Rostagno (2014) argue that ‘risk shocks’ can replace the investment
shocks after one takes into consideration financial variables. Unlike the negative short-run
co-movement after a marginal efficiency of investment shock in their model, the unantici-
pated risk shock results into a decline of private consumption as well as of investment. The
drop of consumption, however, is small and gradual on the backdrop of sharp drop in private

5In their online JME Appendix, pp. 15, JPT admit that the model fails ‘capture the contemporaneous cor-
relation between consumption and investment growth.’ They, however claim that ‘This correlation is slightly
positive in the data, but essentially zero in the model’. This statement describes the model perfectly, less so the
actual data they work with, see Fig. 4.
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investment. In the troff of private investment response to the shock in the seventh quarter, pri-
vate investment is roughly 15 times more volatile than consumption. The trouble is that some-
thing like this has not happened in the United States since 1950 and most likely ever before
in absolute terms, which restricts the quantitative importance of the shock. Private invest-
ment cyclical dynamics is roughly four times more volatile than private consumption and fif-
teen fold difference volatility does not carry through through disaggregation to non-durables
either, see Fig. 3. Even when some other shock would induce a positive co-movement of con-
sumption and investment, the volatility problem would marginalize the importance of the
shock for special and rare events of idiosyncratic investment distress. This explains that the
BGG inspired ‘risk’ shocks are failing.6

In order to fit the dynamics of the data with a misspecified shocks, the shocks need to
become linearly dependent. In this particular example, the strong co-movement of con-
sumption and investment elicits that the unexplained dynamics of consumption is explained
by one or more other shocks, which are linearly dependent with the investment or risk shock
due to strong positive co-movement of consumption and investment. In the papers discussed
the preference shock takes the role of explaining consumption dynamics, that amounts to 70%
of the U.S. GDP.

2. Forecast-Error Variance Decomposition (FEVD)

As already mentioned, the forecast-error variance decomposition is pre-destined on the
independence of structural shocks. With correlated shocks, the FEVD becomes very much
detached from the data the model was estimated with. It still does represents the properties
of the model, however, and is revealing about the empirical fitness of it. The awareness to
stylised facts introduced above suggests that just a few shocks should be responsible for most
of the dynamics at business cycle frequencies, while potentially many shocks are contributing
on the margins to each variable to accommodate interesting historical episodes and develop-
ments.

In majority of DSGE models FEVD analysis reveals misspecification when each variable
has ‘its own major driver’. More precisely, what happens is that the macroeconomic vari-
ables have little co-movement and each has a different shock as a source of their dynam-
ics. This can be again illustrated with (Justiniano, Primiceri, and Tambalotti, 2010, Table 1,

6Further, not that in BGG model the risk premium (spread) is endogenous. It is the risk shock that is intro-
duced to move it in an exogenous way and it is the exogenous component that drives 95% of the spread dynam-
ics in Christiano, Motto, and Rostagno (2014) and other DSGE models with BGG financial frictions.
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pp. 138). In this case consumption ‘preference’ shock contributes 52% of variance of con-
sumption and hardly anything else with negligible impact on investment of 2%, while invest-
ment shock contributes 82% of variance in investment and over 50% of variance in output
and hours worked. Moreover, over 70% or 50% of variance in inflation and wages, respec-
tively, is due to ‘markup’ shocks to prices and wages, while the ‘preference’ shock driving
consumption contributes 0% of variance in wages and 2% of inflation dynamics. That means
that development of private consumption is essentially irrelevant for price dynamics – a state-
ment at odds with the stylized facts. While ‘demand’ is irrelevant, a neutral technology shock
accounts for 14% of inflation variation, yet it is to be noted that this is due to counter-cyclical

dynamics of inflation – a technology shocks leads to a drop in inflation.7

Very similar pattern of FEVD can be found in the other two papers analyzed, with the
small-open economy model benefiting from the exogenous foreign shocks. In both CTW
(Tab. 6, pp. 2032) and CMR (Tab. 5, pp. 50) models consumption is explained mostly by
the preference shock, while investment is driven by entrepreneurial wealth and risk shocks,
respectively. The model in CTW is a small open-economy model and benefits from a purely
exogenous demand shock from abroad, which can give arise to positive spillover effects.

3. Shock Decompositions of Observed Data

Shock decomposition with a misspecified model often result in contribution of shocks
to a variable that offset one another by a large margin. What is meant by the statement is
that a 0.2% growth in a variable can be decomposed into a 10% growth due to a shock A and
-9.8% growth due to a shock B in most of the periods. A graphical rendering of such shock
decomposition of the actual data looks like a very colorful fish and the graph is fishy indeed.8

The offsetting of shocks emerges when a shock creates an opposite correlation of at least two
variables than what is observed in the data. Another pattern would be that each variable is
explained by its shock (and hence its own color in the graph) in the limit. The spurious corre-
lation is the more frequent case, however, usually for consumption vs. investment, or output
vs. hours worked.

7This may not be the case for a permanent TFP shock when the wealth effect is significant. Even in this
case, however, the amplitude of inflation change is too small in proportion to change in output or its cycle.

8Obviously, guilty as charged! As many other people, the author has produced a great deal of such artwork
in the past, yet to his credit it was to his utter dissatisfaction.
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Figure 5. An Example of a ‘Fish’ Shock Decomposition
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Relatively large offsetting contributions of shocks can be found in Christiano, Trabandt,
and Walentin (2011) for all reported variables, namely for inflation. The shock decompo-
sition of output, inflation, interest rate spread, and unemployment in Figures 10–13 in CTW
demonstrate a significant degree of misspecification where one shock is offsetting another. In
this paper it is not argued, that at times structural shocks counteract one another, namely as
economic policy is involved. In the Great Recession, for sure a monetary policy shock repre-
senting implicit tightening can work against an adverse shock triggering the recession. Yet,
the shock decomposition of inflation by CTW seems relatively stable in the degree of shocks
offsetting, as is the case with unemployment.

TBW

D. Consequences
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III. STATE ESTIMATION WITH SINGULAR MODELS AND UNCORRELATED SHOCKS

A. Model

It is assumed that the model can be expressed as a linear state-space model. The discus-
sion below focuses on linear case with constant coefficients only. The model can be written
as:

Yt = Z Xt + Hεt , (1)

Xt = T Xt−1 + Rεt with εt ∼ N (0, I); (2)

where the model is said to be stochastically singular if the number of shocks, ne = dim(εt ) is
smaller than the number of observed variables, ny = dim(Yt ).

The estimation of the state variables and shocks would normally proceed with the Kalman
smoother. In the case when ne < ny, this standard solution is not feasible, unless the observed
data have exactly the dynamic rank equal to ne. Such situation is rare, since the real data are
rarely rank-deficient exactly. Even with when the data had a factor structure, some idiosyn-
cratic random noise or high-frequency variation is always present and we will assume that the
process {Y obs

t } has a stochastic rank equal to ny.

A solution to deal with stochastically singular models has been analyzed before in Andrle
(2012), based on principal components. When static or –preferably dynamic– principal
component analysis effectively processes the data due to strong commonalities, the model’s
measurement equation can be rotated to a (dynamic) principal component sub-space of the
data. Thus having just one, or two, shocks with multiple observables means one needs to use
one, or two (dynamic) principal components and map the measurement equation to these.
This paper introduces an alternative but complementary solution, which exploits the stochas-
tic singularity of the model itself, not of the data.

B. Least-Squares State Estimation

The estimation of structural shocks below makes use of an equivalence between least-squares,
Wiener-Kolmogorov, and Kalman filtering. After all, the very nature of the Kalman smoother
is that it is a recursive and efficient version of the least squares, see Kalman (1960), Whittle
(1983), or Durbin and Koopman (2001). Although the time-domain and frequency-domain
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approaches are equivalent, each can be more elegant and easy to use in different tasks, see
e.g. Whittle (1983), Gomez (1999), or Andrle (2012), among others.

Recently, in the economics literature some authors have re-stated the fact that state
estimation is a least-squares problem. Schmitt-Grohé and Uribe (2010) note that this form
of state estimation can be used for evaluating the likelihood function with pre-filtered data
and model. That, however, can be achieved more efficiently in the frequency domain using
the Whittle likelihood, see e.g. Harvey (1991), Christiano and Vigfusson (2003), or Andrle
(2012). Further, Kollman (2013) that a stacked-time least squares problem can be formu-
late to estimate shocks in the linear state-space model. It was exactly this kind of large-scale
inverse least-squares problem, however, that Kalman (1960) ingenuously reformulated in a
recursive way and made computationally more efficient, or feasible at all at that time.

To estimate the structural shocks and initial conditions, the problem is cast into a stacked-time
least-squares problem to accommodate rank-deficiency and restrictions on shocks. This
intuitive and simple setup, however, is computationally inefficient, unlike its frequency-domain
implementation discussed below. The optimization task associated with the model can be eas-
ily written as follows:

min
X0 ,{ε}

Λ = X0P−1X0 +
N∑

t=1

[Yt − Z Xt] (HH′)−1 [Yt − Z Xt]′ (3)

+
N∑

t=1

[Xt −T Xt−1] (RR′)−1 [Xt −T Xt−1]′ . (4)

It is useful to rewrite the least-squares problem in a stacked form and as a function of the ini-
tial state X0 and stochastic shocks, εt , only. Denoting Y = [Y1 Y2 . . . YN ]′, E = [ε1 ε2 . . . εN ],
and Z = [X0 E], the least-squares problem is stated as follows:

Z = argmin | |vecY−A × vecZ| |, (5)

where the ‘multiplier’ matrix A is clearly given by the structure of the model and the values
of T, Z, R and H . The dimension of vecY is (nyN ) × (ne N + nx). Further, it is trivial to see
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that the structure of A is

A =



ZT | ZR + H 0 0 0 . . . 0
ZT2 | ZTR ZR + H 0 0 . . . 0
ZT3 | ZT2R ZTR ZR + H 0 . . . 0
... |

...
...

...
...

. . .
...

ZTN | ZTN−1R ZTN−2R . . . . . . . . . ZR + H


= [O H ]. (6)

The solution of least-squares problem is achieved using the singular value decomposition
(SVD) of the multiplier matrix A. The solution using the SVD, see e.g. Strang (2009), or
Golub and van Loan (1996) for details, is numerically efficient, allows for stochastically sin-
gular models, and provides insights into conditioning of the estimation problem. In general,
the multiplier matrix A is not square and invertible, once the initial conditions are being esti-
mated, or the number of shocks, state variables and the sample size take rather special values.
When the number of shocks is less than equal to the number of observed variables, ne ≥ ny,
SVD is just a standard unique solution of the least squares and the model explains all varia-
tions in the data. The solution is obviously equivalent to the one obtained with the Kalman
smoother.

Unlike with the standard Kalman smoother, the solution of stochastically singular models
with ne < ny is feasible in this case. When ny > ne, the least-square problem is under-determined
and standard solutions do not apply. Fortunately, this is just a standard and well-understood
problem in linear algebra, when the null-space of the multiplier matrix A is unraveled using
the SVD. The solution is not unique. It is chosen such that the energy of the shocks is the
smallest among solutions available. Since the problem is under-determined, the ‘fitted’ val-
ues of observables do not equal to observed data, unless in the very rare case of stochastically
singular input data. Hence, there will be residuals, errors. These residuals are, of course, quite
different from structural shocks. Note that the exact null-space of the model transfer function
is used, all structural equations are respected.

The solution written in terms of the SVD transformation of the multiplier matrix A is
revealing of the structure of the problem. Namely, one can analyze the conditioning of A
by inspecting its singular values. The solution requires an SVD of an m × n multiplier matrix
A as follows

A =
[
U1 U2

] S1 0
0 0


V′1V′2

 = r∑
i=1

siuiv
′
i . (7)
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where r = rank(A), U′U = I, V′V = I and S1 is diagonal, S1 = diag(s1, . . . , sp), where p =

min{m,n}. When the matrix A is singular, then rank of A is r , then sr+1 = · · · = sp = 0.

The solution vecZ is then obtained as

vecZ = V1S−1
1 U′1 × vecY (8)

=

r∑
i=1

u′i × vecY
si

vi . (9)

For stochastically singular models an extra care needs to be devoted to an estimate of
the state variance. For these models, the covariance matrix P in (3) is singular and does not
posses an inverse. In such case the algorithm uses a regularized inverse, with the covariance
matrix augmented for a diffuse component, i.e. P̄ = P +γI, where I is and identity matrix.

C. Testing and Estimation with Uncorrelated Structural Shocks

Estimation of structural shocks requires further restriction, namely that the structural
shocks are uncorrelated. With the restriction of uncorrelated structural shock is applied to
the problem (5), the solution may not–and usually will not–explain all the variation in the
observed data even when the model is not stochastically singular. Again, there will be residu-
als. The relevant optimization problem is given as follows:

Zλ = argmin {| |vecY−A × vecZ| | + λ | |N−1E′ × E− I| |M }, (10)

where Z = [X0 E] as defined above and λ ∈ [0,∞) is a parameter that sets the relative weight
on the constraint requiring the structural shocks to be ‘uncorrelated’. Uncorrelated means that
the spectrum of shocks is flat, not only that contemporaneous correlation is zero. The norm
| |.| |M is a ‘matrix norm’ which could entail a variety of norms (Frobenius, Schatten, or entry-
wise). Orthogonal Procrustes problems use the Frobenius norm, computations below use an
entry-wise norm, which is and L2 norm with vectorized matrices.

In this paper, numerical methods are used to solve the restricted problem. The initial
conditions are obtained from solving (5) using SVD both in stochastically regular and singu-
lar case, which are then updated numerically for given value of λ. Despite the problem being
close in spirit to the “orthogonal Procrustes problem”, which is easily solved using the SVD9,

9 The problem is to find Q such that | |A− BQ | |F and QQ′ = I, given known A,B. See e.g. (Golub and van
Loan, 1996, pp. 601).
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the particular problem does not seem to have an analytical solution. That is also true in gen-
eral for the weighted orthogonal Procrustes problem, see e.g. .

Finite sample considerations are easily taken on board and should provide more realistic
setup of the misspecification test and of a penalty function. In short samples, the covari-
ance matrix of course is not an identity matrix and it needs to be tested for no correlation.
The solution is to consider the sample size N and to sample εs |N = N (0, I) for s = 1, . . . , S
replications, which enables to use finite-sample distribution of elements in the covariance
matrix or the Frobenius norm as a ‘prior’ distribution for the penalty, rescaled by λ. For short
samples available to macroeconomists the distribution can be relatively large, see Fig. 10.
There is also a well-known test for sphericity by Bartlett (1954) and tests for detecting multi-
collinearity based on spectral decomposition of the covariance matrix.

A more refined approach takes into account explicitly the identification of the shocks
using the Kalman filter. The test samples εs |N = N (0, I) for s = 1, . . . , S with the sample
size N , uses the model to obtain a set of observed variables Ys |N , and subsequently runs the
Kalman smoother to obtain ε̂s |N to be used for construction of the distribution of cross-covariance
matrix and other statistics under the hypothesis of well-specified model.

The finite-sample distribution of random innovations lend itself naturally for a mis-
specification testing. The importance of short-sample consideration is large in the specifi-
cation of the test. The test becomes a “necessary hurdle that any business cycle model must
clear," King and Plosser (1989). It is, however, only a necessary not sufficient condition for
the model to a plausible explanation of the data. For instance, while real business cycle model
may seem like a plausible explanation in this sense, after including inflation, stock prices or
other variables into set of observables, the hypothesis may break down.

1. More Refined Criteria for Identification of Structural Shocks

The restriction on shock correlation is far from perfect and represents just a first step
in the analysis of model misspecification. A restriction of pair-wise cross-correlation does
not address all issues of linear dependency of the structural shocks (static rank) or their tem-
poral cross-dependencies (dynamic rank). It is often the case that the misspecification gets
introduced into temporal cross-correlation among residuals.
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D. More Efficient Implementation

There can be more efficient implementation of the filter, explicitly framed within Wiener-
Kolmogorov filtering tradition. The implementation is explicitly frequency-domain based and
makes clear what frequencies are being used for shock identification.

The frequency-domain analogue to the state-space model ?? implies the following spectral
density of the measurement process SY (λ) and states, SX (λ). The structural shocks are iid
white noise with a flat spectrum by assumption.

TBW. . .
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IV. APPLICATIONS

A. “Investment Shocks” as Explanation of the Business Cycle

This section investigates a typical New-Keynesian DSGE model of and demonstrates
that the main result is due to a model misspecification and produces correlated shocks.
In a prominent paper, Justiniano, Primiceri, and Tambalotti (2010) have constructed and esti-
mated a DSGE model to conclude that the “main finding is that investment shocks–shocks
to the marginal efficiency of investment– are the main drivers of movements in hours, out-
put and investment over the cycle," (JPT, pp.144). This is very true in their model, as well as
that the investment shocks explain for instance less than 10% of consumption variance, see
their Table 1 on pp. 138. However, in the United States the private consumption amounts to
roughly 70% of GDP and is almost perfectly correlated with investment at business cycle fre-
quencies since at least 1950. Consumption is thus explained by ‘its own’ shock to preferences
of households, which adds almost anything to explaining volatility of investment or any other
variable, for what it matters.

The explanation of the authors’ findings is that the model and the role of investment
shocks are misspecified and features cross-correlated ‘structural’ shocks. The preference
shock explains consumption, investment shock explains investment and since in the U.S. data
consumption and investment are strongly correlated, the estimated shocks inevitably must be
strongly correlated as well. In such a situation shocks in DSGE models should not be consid-
ered structural. The model ‘fits’ the data only at cost of correlated shocks, where essentially
each variable is driven by ‘its own’ shocks. For instance, around 70% of inflation dynam-
ics is driven by ‘markup’ shocks, with only 8% being explained by consumption-preference
and investment shocks, which drive most of the consumption and investment, and thus out-
put dynamics. The model has virtually no role for a ‘Phillips curve’ where aggregate demand
would be affecting inflation, which is clearly at odds with the literature, see e.g. .

The New-Keynesian model with investment shocks is parameterized using the median
posterior estimates by JPT and the focus here is solely on the estimation of structural
shocks. The model is taken as given, including the Bayesian likelihood estimates, no attempts
to modify or extend the model are made. The model is formulated in a state-space form (1)-
(2), with structural shocks transformed to multivariate standard Normal distribution. The data
range from 1954:Q3 to 2004:Q4 for the baseline estimate and 1954:Q3 to 2013:Q4 for an
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update. The estimated ‘structural’ shocks are tested for uncorrelatedness using the sphericity
test by Bartlett (1954) and using the exact short-sample distribution introduced above.

An inspection of structural shocks estimated using the Kalman smoother reveals a
significant cross-correlation patterns. Due to the attempt to match the full data dynamics
with the model, the estimated innovations feature a great deal of high-frequency variation. It
is this high-frequency variation which can ‘mask’ contemporaneous and temporal the cross-
correlation at cyclical frequencies. Even a naked eye can tell there is a co-movement among
selected shocks, as depicted at Fig. 6. It is thus not surprising that despite a contemporaneous
correlation of investment-specific shock with preference shock is just −0.005, when a lag is
accounted for one finds a cross-correlation of 0.28, which –given the sample size and finite-
sample distribution of shocks at Fig. 10– is extremely unlikely to be a mistaken for no cor-
relation. Similar findings hold, for instance, for wage and price mark-up shocks with a con-
termporaneous correlation of −0.216.

To asses comovement among shocks in finer detail, measures of coherence were calculated.
Coherence is a frequency-domain analogue of cross-correlation, expressed across frequency
bands. It corrects for lead/lag relationship also. Bivariate coherences in Fig. 7 were obtained
using a VAR model with three lags with structural shocks, omitting policy and government
spending shocks.10 The business cycle frequencies, 4− 32 quarters, are shaded in gray. The
peak coherences range from 0.2 to 0.4 and usually concentrate at lower frequencies, except
the case of wage and price markup and investment-specific shock with TFP (as weel as low
frequencies). Considering the fact that these are coherences for ‘structural shocks’ that should
have a flat spectrum with no coherence, the values are large. An omen of misspecification.

How does the shock estimates and ‘fit’ of the model change with restriction on con-
temporaneous correlation of shocks? When structural shocks are estimated using the least
squares augmented only for the restriction that contemporaneous cross-covariance matrix of
structural shocks is diagonal with unitary variance, the shock estimates do not change sig-
nificantly. Unlike in (10) the constraint is now | |N−1E × E′ − I| |M }, the covariance matrix is
ne × ne. In this case finite-sample considerations are ignored and λ = 10000. Modest changes
are visible only for the nominal interest rate series and hours worked in 1980s, see Fig. 12 in
the Appendix.

10The results are robust to change in order of the VAR. Parametric estimate has been chosen, but non-
parametric results using the Bartlett kernel are comparable. Andrle, Brůha, and Solmaz (2014) discuss the rela-
tionship between these two estimation approaches in greater detail.
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Figure 6. Estimated shocks (1954:3–2004:4, unrestricted, normalized)
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Figure 7. Coherence of Structural Shocks (1954:3–2004:4, unrestricted, normalized)
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The misspecification of the model can be illustrated by its imperfect fit when structural
shocks are required to be temporally cross-correlated. The model with the parameteriza-
tion as estimated in the paper is used to estimate structural shocks using the restricted least-
squares estimator introduced above. As the number of shocks, seven, equals the number of
observed variables, the potential of the estimator to handle reduced-rank estimates is not rele-
vant and there is always a solution of the unrestricted least-squares Kalman problem. Fig. ??
demonstrates that the ‘fit’ of the model is rather low in this case as the structure of the model
is at odds with the data.

TBW
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V. CONCLUSION

Once estimation of structural shocks is taken very seriously, the requirement of them
being uncorrelated is a very natural one. This paper introduces a new approach of esti-
mating structural shocks in DSGE models with an arbitrary number of shocks that are uncor-
related, and a residual-based test of misspecification. The models can thus be stochastically
singular. Once only uncorrelated shocks are believed to be structural, an intuitive distinction
between structural shocks and residuals opens up. Hence, the structure and size of residu-
als give arise to a measure of the model misspecification and ‘fit’. Cross-correlation among
‘structural’ shocks is always a sign of model misspecification and to great extent invalidates
the further analysis of the models’ impulse-response function, spectral density, forecast-error
variance decompositions, or use for economic policy.

The importance of uncorrelated structural shocks is exemplified using a New-Keynesian
model with a prominent role of ‘investment shocks’, and it is demonstrated to be misspecified.
When the estimated shocks cannot be strongly correlated, the model does fit the U.S. macro-
economic data imperfectly. In this very case, this is due to inability of the model to explain
co-movement of investment and consumption. In other models, the case is often the inability
to match co-movement of output and employment, or output and inflation.

Structural shock estimation using restricted least squares is feasible in principle for
both linear and nonlinear models. Without the restriction of uncorrelatedness of structural
shocks, the least-squares problem has a simple analytical solution. In the case of stochasti-
cally singular models, the under-determined least-squares problem is solved by an applica-
tion of the singular value decomposition (SVD), the ‘queen of linear algebra’. The restricted
problem is in the spirit of ‘orthogonal Procrustes’ problem but for the specification at hand no
analytical solution has been found yet and refinement of the computational aspect is left for
further research.
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Andrle, M., J. Brůha, and S. Solmaz, 2014, “On the Sources of Business Cycles: It’s the
Demand... !” Techn. rep., International Monetary Fund.

Bartlett, M.S., 1954, “A Note on the Multiplying Factors for Various χ2 Approximations,”
Journal of the Royal Statistical Society. Series B (Methodological), Vol. 16, No. 2, pp. 296–
298.

Bernanke, B., and M. Gertler, 1989, “Agency Costs, Net Worth, and Business Fluctuations,”
American Economic Review, Vol. 79, No. 1, pp. 14–31.

Burns, A.F., and W.C. Mitchell, 1946, Measuring Business Cycles (New York: NBER).

Christiano, L.J., R. Motto, and M. Rostagno, 2014, “Risk Shocks,” American Economic
Review, Vol. 104, No. 1, pp. 27–65.

Christiano, L.J., M. Trabandt, and K. Walentin, 2011, “Introducing Financial Frictions and
Unemployment into a Small Open Economy Model,” Journal of Economic Dynamics and
Control, Vol. 35, No. 3, pp. 1999–2041.

Christiano, L.J., and R.J. Vigfusson, 2003, “Maximum Likelihood in the Frequency Domain:
a Time to Build Example,” Journal of Monetary Economics, Vol. 50, No. 4, pp. 789–815.

Durbin, J., and S.J. Koopman, 2001, Time Series Analysis by State Space Methods (New
York: Oxford UP).

Forni, M., M. Hallin, and L. Reichlin, 2000, “The Generalized Dynamic-Factor Model: Iden-
tification and Estimation,” Review of Economics and Statistics, Vol. 82, No. 4, pp. 540–554.

Golub, G.H., and Ch.F. van Loan, 1996, Matrix Computations (Baltimore: Johns Hopkins
University Press).

Gomez, V., 1999, “Three Equivalent Methods for Filtering Finite Nonstationary Time Series,”
Journal of Business & Economics Statistics, Vol. 17, No. 1, pp. 109–116.

Harvey, A.C., 1991, Forecasting, Structural Time Series Models an the Kalman Filter (Cam-
bridge: Cambridge University Press).

Justiniano, A., G.E. Primiceri, and A. Tambalotti, 2010, “Investment Shock and Business
Cycles,” Journal of Monetary Economics, Vol. 57, No. 2, pp. 132–145.

Kaiser, R., and A. Maravall, 1999, “Estimation of the Business Cycle: A Modified Hodrick-
Prescott Filter,” Spanish Economic Review, Vol. 1, pp. 175–206.



31

Kalman, R.E., 1960, “A new approach to linear filtering and prediction problems,” Trans,
ASME, Ser. D., Journal of Basic Engineering, Vol. 82, pp. 35–45.

King, R.G., and Ch.I. Plosser, 1989, “Real Business Cycles and the Test of the Adelmans,”
Working Paper 3160, NBER, Cambridge, MA.

Kollman, R., 2013, “Estimating the state vector of linearized DSGE models without the
Kalman filter,” Economics Letters, Vol. 120, No. 1, pp. 65–66.

Pearl, J., 2009, Causality: Models, Reasoning, and Inference (Cambridge: Cambridge UP).

Pedersen, M.T., 2001, “The Hodrick-Prescott Filter, the Slutsky Effect, and Distortionary
Effects of Filters,” Journal of Economic Dynamics and Control, Vol. 25, pp. 1081–1101.

Pollock, S., 2014, “Cycles, Syllogisms and Semantics: Examining the Idea of Spurious
Cycles,” Working Paper 14/03, University of Leicester, Leicester.

Schmitt-Grohé, S., and M. Uribe, 2010, “Evaluating the sample likelihood of linearized
DSGE models without the use of the Kalman filter,” Economics Letters, Vol. 109, No. 3, pp.
142–143.

Stock, J., and M. Watson, 2002, “Macroeconomic Forecasting using Diffusion Indexes,” Jour-
nal of Business & Economics Statistics, Vol. 20, No. 2, pp. 147–162.

Strang, G., 2009, Introduction to Linear Algebra, (Fourth Edition) (Wellesley Cambridge
Press).

Whittle, P., 1983, Prediction and Regulation by Linear Least-Square Methods, Second Ed.
(Minneapolis: University of Minnesota Press).



32

VI. APPENDIX: ADDITIONAL GRAPHS
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Figure 8. U.S. Cyclical Stylized Facts (post 1985)
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Figure 9. U.S. Cyclical Stylized Facts (post 1985)
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Figure 10. Distribution of Covariance Matrix Elements for N (0, I)
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Figure 11. Response to Investment Specific Shock in JPT model
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Figure 12. Fitted Observables: ‘Short’ Cov. Matrix Restrictions vs. Data
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VII. APPENDIX: DATA AND TRANSFORMATIONS

The data set and its transformation aim to follow the relevant literature discussed. Namely,
for comparability reasons we follow the Appendix to Justiniano, Primiceri, and Tambalotti
(2010). The data source is HAVER Analytics (USECON database) and FRED St. Louis data-
base, series tickers in parenthesis. The balanced data range available is from 1954:Q3 to
2013:Q4. Real output is constructed using the value series (GDP), adjusted for the popu-
lation (LF + LH) and the output deflator (JGDP). Real consumption and investment is also
expressed in per capita terms, with the output deflator used to obtain the volume series. For
better alignment with the model, the literature defines private consumption only as consump-
tion of non-durable goods (CN) and services. Accordingly, private investment is defined as
comprising gross private domestic investment (I) and consumption expenditures on durables
(CD). Real wages are obtained as nominal compensation per hour in the non-farm business
sector (LXNFC) adjusted for the output deflator. The effective Federal Funds rate (FFED)
are taken as the model nominal rate of interest. The labor input is measured using hours of
all persons in the nonfarm business sector (LXNFH), adjusted for populations and in loga-
rithms.11

It should be understood that the data definition and transformations bear important
consequences for the model analysis. First, the assumption of a single price in the model
is at odds with a trend decline of relative price of investment goods to consumption goods,
see e.g. . Second, the omission of both government consumption and net trade corrupts fun-
damental identities of national accounting in the model. Further, the scaling by population
introduces a joint dynamics into consumption, investment, and output at particular frequen-
cies. Further, the model has no mechanism for a potential shift in an implicit long-term infla-
tion goal of the Fed and explains all frequencies of the U.S. inflation by demand and supply
shocks.

11Justiniano, Primiceri, and Tambalotti (2010) report to use a series HNFBN from Haver Analytics. To our
knowledge the series with this mnemonics is not present and has not ever been present in the Haver Analytics
database. The representative of Haver Analytics were not able to identify the series or any discontinued series
of that name and suggested the use of LXNFH series. I would like to thank Kevin Keithley (IMF) and Edlin
Perdomo (Haver Analytics) for their help.
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VIII. APPENDIX: REDUCED-RANK FILTER EXAMPLE

A. Simple Dynamic Semi-Structural Model

The model follows a typical New-Keynesian closed economy model with price rigidities.
Inflation, πt , is driven by output in excess of its trend or equilibrium value, using a forward-
looking Phillips curve. The output cycle, ŷ, is determined by an output equation derived from
consumption smoothing and is interest sensitive. The monetary policy authority sets the short-
term nominal interest rate, it , via an inflation-forecast based rule, weighting the expected
deviation of year-on-year inflation from its target and the output gap.

ŷt = α1yt+1|t +α2yt−1 +α3(rrt − rr t ) + εyt (11)

πc
t = λ1π

c
t+1|t + (1− λ1)πc

t−1 + λ2 ŷt + επt (12)

it = γ1it−1 + (1− γ1) ×
[
(rr t + πt ) +γ2(πy/yt+3|t − πt+3) +γ3yt

]
+ εi

t (13)

πt = πc
t + επ,sr

t (14)

rrt = it − πt+1|t (15)

πt = ρππt−1 + επt (16)

Despite its small size and simplicity, the model can display nontrivial dynamics in response
to structural shocks. It is driven by eight parameters θ = {α1,2,3, λ1,2, ρi , γ1,2,3} and four
standard deviations for structural shocks. Inflation target is assumed to follow a random-walk,
ρπ = 1.

B. State Estimation with the Model

State estimation with the model can proceed using the Kalman smoother, as it is standard. To
illustrate the SVD filter, it is assumed that due to misspecification of the model, the researcher
attempts to identify only the effect of the demand shocks, εyt .

To make the state-estimation test interesting, the model is simulated with non-zero variance
of the demand, εyt , both inflation shocks (long, επt , and short, επ,sr

t ), as well as with the pol-
icy shock, εi

t . The standard deviations and other model coefficients are stated in the appendix.
Obviously, the smaller is the signal of the particular shock to recover, the harder it will be. In
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addition, the random simulation of the model’s structural shocks was augmented with iden-
tically independently distributed random ‘measurement errors’, which add high-frequency
variation to the actual observed data.

Given the nature of the SVD filter, if only the iid measurement noise to all variables was
added, without the structural shocks being sampled, the demand shock is identified perfectly.12

The reason is that the impulse-response function of the demand shock can in no way replicate
such erratic dynamics and thus extract the true shock with high precision, completely ignor-
ing the high-frequency band that the measurement shocks occupy. For this no changes in the
model’s setup are needed, that is automatic within the SVD filter.

As can be viewed from Fig. 13, in the presence of both the measurement noise and other
structural shocks than demand the identification of the demand shock is not perfect. It is not,
however, hopelessly identified. It easily sees through the noisy variations but–as expected–
the identified shock is a linear combination of the structural ones. Not all is lost, however, as
can be viewed from the Fig. 14, where the comparison of the dynamics solely due to the true
demand shock and the dynamics due to estimated shocks are contrasted. The other shocks,
namely the long inflation shock,επt , confound the information in a nontrivial way and the esti-
mated dynamics differ from the true ones.

12Results upon request for this exercise.
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Figure 13. Noisy data, structural shocks, and estimates
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Figure 14. Effects of true vs. estimated demand shock
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