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Outline of the Talk

I ‘Structural’ shocks?

I Model vs. Filter Misspecification
I Propagation mechanisms, economics
I Number of shocks, residuals

I Bliss of Stochastic Singularity
I Factor analysis of the OECD data
I Give me my residuals baaack!
I SVD filtering

I Evil of Correlated shocks
I Causes & consequences
I Testing for misspecification
I PROCRUSTES filtering

I Illustrations. . .



‘Structural’ Shocks. . .

WE NEED STRUCTURAL SHOCKS

TO TELL ECONOMICALLY MEANINGFUL STORIES. . .

Operational definition of ‘structural shock’:
1. You can tell reasonable, economically meaningful stories
2. Shocks are not systematically cross-correlated

Misspecification:

DSGE models start with uncorrelated (independent) shocks
that render IRFs, FEVDs, etc. meaningful. . .

. . . but end up with correlated shocks in most cases.



Issues & Suggested Solutions:

1. Model vs. Filter Misspecification
a) model’s economics can be off
b) economics is right but the filter is ill-conditioned

2. How many structural shocks can we hope to identify?
I factor/DPCA analysis of OECD data suggest just few key shocks
I a few shocks responsible for bulk of dynamics, bulk of shocks

contributing little to data dynamics
I is ‘stochastic singularity’ actually a blessing?

Analysis in the paper:

1. Testing for misspecification: correlated shocks
2. SVD Filtering: dealing with stochastic singularity
3. Procrustes Filtering:

(can we explaining data with uncorrelated shocks?)



Misspecification Sign: Correlated Shocks

Assume a linear model with structural shocks, ε,

Yt = D(L)εt εt ∼ N(0, I) (1)

and associated filter F (L) for uncovering structural shocks,

ε̂t = F (L)Yt . (2)

Sufficient (but not necessary) condition for misspecification is
when estimated shocks, ε̂t are significantly cross- and
auto-correlated.

Leads to “fishy” shock decompositions. . .



Cross-Correlated Shocks: Fishy FISH
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Example: Stochastic Rank of US Data since 1950
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Example: Stochastic Rank of US Data (JPT 2010)
Justiniano, Primiceri, and Tambalotti (JME, 2010) (JPT 2010)
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Typical Investment Shock (JPT 2010)
. . . but ‘risk’ shocks and credit shocks on the same boat, essentially
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Shock Cross-Correlation & Misspecification
. . . not a white noise, really
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Misspecification Sign: Correlated Shocks
JPT-2010: correlation of inv. shock(t) and pref. shock(t-1) is 0.28
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Ill-Conditioning and Fragility

Even with a great model, Kalman smoothing is a rather
fragile exercise that does not aspire for robustness.

Shock identification is a signal-extraction exercise, Kalman
filter must be viewed as as a filter: εt = F (L)Yt (Andrle 2013a,
2013b)

The filter F (L) may be very ill-conditioned, i.e. over-sensitive
to small changes in the input data, Y . It’s a property of the
model/filter!

The goal of explaining 100% of data dynamics with ‘structural
shocks’ and a stylized model is fraught with hazards

What’s wrong with having residuals? Your OLS has it. . .



Robustness: Roughly Right or Precisely Wrong?

Ill-conditioning and fragility:[
y1
y2

]
=

[
1 + φ 1

1 1 + θ

] [
ε1
ε2

]
(3)

for θ → 0 the model is over-sensitive to changes in y .

[
ε1
ε2

]
=
[
−0.1
−0.3

]
A→
[
−0.4
−0.4

]
=
[

y1
y2

] [
y1
y2

]
=
[
−0.4000
−0.3999

]
A→
[
ε1
ε2

]
=
[
−0.6
0.2

]

Even with the right model, a small perturbation to input data
leads to important changes in the estimates of structural
shocks. . .

Below it is demonstrated that Kalman smoother has the form
Y = A× E as above



State-Space Setup

The linear state-space model is given by:

Yt = ZXt + Hεt (4)
Xt = TXt−1 + Rεt with εt ∼ N(0, I) (5)

The model is said to be stochastically singular if

rank Sy (ω) < rank Sε(ω).

For singularity it is sufficient that nε < nY .

Today, we’ll stay in time domain but frequency domain would
serve just fine as well. . .



Kalman Smoother as a Least-Squares Problem (1)

min
X0,{ε}

Λ = X0P−1X0 +
N∑

t=1

[Yt − ZXt ] (HH ′)−1 [Yt − ZXt ]
′

+
N∑

t=1

[Xt − TXt−1] (RR′)−1 [Xt − TXt−1]′ .

The genius of Kalman was to make the problem recursive!
. . . and I’m kind of doing the opposite



Kalman Smoother as a Least-Squares Problem (2)

Denoting Y = [Y1 Y2 . . . YN ]′, E = [ε1 ε2 . . . εN ], and
Z = [X0 E], the least-squares problem is stated as follows:

Z = argmin ||vecY− A× vec Z||, (6)

A =


ZT | ZR + H 0 0 0 . . . 0
ZT2 | ZT2R ZTR ZR + H 0 . . . 0

... |
...

...
...

...
. . .

...
ZTN | ZTN−1R ZTN−2R . . . . . . . . . ZR + H

 = [O H]. (7)



SVD Filtering (1): Handles Singular Models
“SVD Filter” – shock estimates for both regular and singular
problems

A =
[
U1 U2

] [S1 0
0 0

] [
V′1
V′2

]
=

r∑
i=1

siuiv ′i . (8)

where r = rank(A), U′U = I, V′V = I and S1 is diagonal,
S1 = diag(s1, . . . , sp), where p = min{m, n}. When the matrix A is singular,
then rank of A is r , then sr+1 = · · · = sp = 0.

The solution to vec Z is then obtained as

vec Z = V1S−1
1 U′1 × vec Y (9)

=
r∑

i=1

u′i × vec Y
si

vi . (10)



SVD Filtering (2)

SVD Filter is an extension of the Kalman filter:
(i) For regular models is identical to Kalman smoother/filter
(ii) Handles singular models
(iii) Makes inspecting of ill-conditioning a cinch (SVD of A)

(iv) Implementation in frequency domain is more efficient
(memory, speed)



SVD Filter Example (1)
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SVD Filter Example (2)
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Procrustes Filtering

I We minimize distance of the model and data in a
mean-square sense (Kalman smoother)

I Using SVD filter we can choose any number of shocks we
want to test and distinguish residuals and structural shocks

I So how about choosing the shocks only from a set of
‘reasonably uncorrelated’ shocks?

Question asked:
How big residuals I get when I fit the data with shocks that can’t
be too correlated? If I cannot fit much, am I in BIG trouble?



Intuition – Orthogonal Procrustes Problem

Given A and B, find orthogonal rotation matrix R such that

R = argmin||R× A− B||F s.t. R′R = I (11)

There is an analytical solution to orthogonal Procrustes. . .



“Procrustes Filter”: Uncorrelated Shocks Imposed

Purpose:
Given the model, estimate structural shocks to match the data
dynamics as best as possible, while keeping the shocks
uncorrelated. . .

Zλ = argmin {||vecY− A× vec Z||+ λ||N−1E× E′ − I||M},

Here, ||.||M, is a suitable matrix measure
I L2 distance
I penalty function reflecting finite-sample variation

Acknowledging the finite-sample distribution of shocks is
important.



“Procrustes Filter”: Weak & Strong Version

1. Weak PF: penalizes contemporaneous cross-cov ONLY
2. Strong PF: penalizes the ACGF/spectrum profile



Example: ‘Weak’ Procrustes using JPT-2010
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Example: ‘Strong’ Procrustes using JPT-2010



Thank you for your patience. . .


