Cheers to the Good Health of the US Short-Run Phillips Curve

Michal Andrle

University of Notre Dame, May 2012

\(^1\) The views expressed herein are those of the author and should not be attributed to the International Monetary Fund, its Executive Board, or its management.
Outline of the Talk

- Time series evidence
- Definition of inflation target (trend inflation)
- Dynamic New-Kynesian model simulations
Motivation

Relatively large literature on death of PC and real/nominal dichotomy

- Giannone, Reichlin and Sala (2004):
 “The bulk of medium- and long-run dynamics of output is explained by one shock that has similar effects on all real variables and the bulk of medium- and long-run dynamics of inflation by a shock, orthogonal to it, that has similar effects on all nominal variables.”

- Smets and Wouters (2007), inflation dominated by cost-push shocks

- Stock and Watson (2005)

- Ball and Mazumder (2011) – Great Recession provides the evidence against the New Keynesian Phillips Curve with rational expectations.

- Dynamic factor models literature supports real/nominal dichotomy
Main findings & conclusions

US short-run Phillips curve is alive and well!

1. Stable relationship between unemployment and inflation across wide frequency band
2. Cyclical frequencies determined by spectral properties of deviation of inflation from long-term expectations survey
3. One principal component explains most variation in output, unemployment and inflation across business cycles, unlike in Stock and Watson (2005)
4. New-Keynesian forward-looking Phillips Curve is consistent with the US data
5. It is crucial to model long- and short-lived cost-push shocks and inflation target
6. Demand cycles drive most of US inflation dynamics
Time series analysis

Data used:

1. Unemployment rate
2. Real GDP (and its components)
3. Capacity utilisation
4. FRB Dallas Trimmed Mean Inflation
5. FRB Cleveland Median and Trimmed Mean Inflation consumption deflator, cons. deflator ex food and energy

Extraction of cyclical information

1. Frequency-domain based band-pass filter with Hamming window, see e.g. Iacobucci and Noullez (2005)
2. Christiano-Fitzgerald band-pass filter
Real business cycle co-movements (0-32 0-60)

[Graphs showing co-movements and frequency-based Okun's law between unemployment and output over different time periods.]
Linking real economy to inflation

Intuitively, three types of drivers of inflation

1. inflation target or long-term inflation expectations
2. high-frequency volatility, mis-measurements, market churning
3. sustained increase in inflation to cyclical changes in real marginal costs
Slicing inflation...

Core inflation – CPI_XFE, q/q sar %

Long frequencies — 36+

Cyclical frequencies — 4–36

High frequency volatility

- infl. gap
- unempl. gap — scaled, lagged
Real and nominal coherence

- Coherence: gdp → unemployment
- Coherence: inflation → unemployment
- Coherence: cap. util → unemployment
- Coherence: inflation dev. from "target" → unemployment
Inflation dynamics in layers

Inflation target (implicit in US) long-term inflation expectations

- a priori one hopes for stable inflation target (trend shifts)
 (e.g. Czech Republic official target and band-pass trend almost coincide...)
- I use FED’s ’target’ data (FRB/US model’s PTR) based on Survey of Prof. Forecasters 10Y expectations
- I select bandwidth that minimizes distance between the band-pass component of inflation and deviation of inflation from long-term infl. expectations

High-frequency variations

- explicit account of short-lived cost-push shocks
- relevant not only for emerging market economies...
- frequency-based view on core inflation vs. price changes distribution
Searching for an ‘inflation target’… (a)
Searching for an ‘inflation target’... (b)
Principal component analysis

Dynamic principal component analysis as a prelude to structural model.

Two approaches:
- dynamic principal components filter (Brillinger, 1984)
- static principal components + phase shift + frequency specific filter

Both methods deliver quite similar results:
1. Single principal component explains virtually all cyclical dynamics of real variables
2. Single principal component can explains real & nominal business cycle dynamics!
Principal component analysis

Output

Capacity util.

Unemployment

Inflation (Dalas)

- Data
- PC#1
Simple monetary model (a)

The Model

\[\hat{y}_t = \alpha_1 \hat{y}_{t+1} + \alpha_2 \hat{y}_{t-1} - \alpha_3 (\hat{r}_t + \hat{r}_t) + \varepsilon_t \]

(1)

\[\hat{\pi}_t = \lambda_1 \hat{\pi}_{t+1} + (1 - \lambda_1) \hat{\pi}_{t-1} + \hat{rmc}_t + \varepsilon_t \]

(2)

\[i_t = \rho_i i_{t-1} + (1 - \rho_i) \left[(r_{eq,t} + \pi^*_{t+1}) + \nu (\pi^c_{y/y,t+3} - \pi^*_{t+3}) + \nu \hat{y} \right] + \varepsilon_t^i \]

(3)

\[r_t = i_t - \pi^c_{t+1} \]

(4)

\[\hat{r}_t = r_t - r_{eq,t} \]

(5)

\[\pi_t = \pi_t - \pi^*_{t+1} \]

(6)

\[\pi_t^c = \pi_t + \varepsilon_t^c \]

(7)

\[\hat{u}_t = \alpha \hat{u}_{t+1} + (1 - \alpha) \hat{u}_{t-1} + \xi \hat{y} + \varepsilon_t^u \]

(8)

\[\hat{rmc}_t = \hat{u}_t \]

(9)

\[i_t^{(N)} = \tau_t^{(N)} + \frac{1}{N} \sum_{j=0}^{N-1} i_t^{j(N)} + \varepsilon_t^{i(N)} \quad \text{for } N = 4, 20, 40 \]

(10)

\[y_t = y_{eq,t} + \hat{y}_t + \varepsilon_t^y \]

(11)

\[y_{eq,t} = y_{eq,t-1} + \mu_t + \varepsilon_t^l \]

(12)

\[\mu_t = \rho_\mu \mu_{t-1} + (1 - \rho_\mu) \bar{\mu} + \varepsilon_t^\mu \]

(13)

\[r_{eq,t} = \rho r_{eq,t} + (1 - \rho_t) \left[(y_{eq,t+1} - y_{eq,t}) - \log(\beta) \right] + \varepsilon_t^r \]

(14)
Simple Monetary Model (b)

Key model properties:
- Long-run money neutrality, vertical long-run PC (LR-PC)
- Expectational short-run Phillips curve
- Long- and short-lived cost-push/markup shocks
- Policy shocks: (i) inflation target (ii) interest rate rule deviations
- Simple ‘Okun’s law’
- Observations on yield curve to indicate long-term infl. expectations
Counter-factual scenario (a)

Setup:
1. Condition on the path of GDP cycle from freq. specific filter (0-60)
2. Condition inflation target as consistent with long-term expectations

The model parameterization reflect the choice of inflation target variable, which determines band-width and persistence of the output cycle
Counter-factual scenario – [0,32] (b)
Work in progress...

Related and ongoing work relating inflation and real economy

- Medium-scale DSGE model with structure explaining the “common factor”
- Estimator of stochastically singular DSGE models (Andrle 2012, CEF)
- Optimal filter design for real time analysis and forecasting
Conclusions

► Short-run US Phillips curve is still with us, even in the crisis!

► One factor explains most of real nominal cycle

► Inflation gap is becoming an observed variable due to FED

► Inflation gap determines cyclical frequencies of interest, which are far beyond 0-32 quarters

► Stylised, forward-looking model is consistent with the evidence

► Inflation dynamics with long-, cyclical- and high-frequency dynamics is for structural model shock identification
Thank you for your patience...