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Abstract

This paper demonstrates a method of estimating and testing stochastically singular state-space models using likelihood-based
methods. The approach uses dimensionality reduction of the observed data and rotates the model into directions of maximum
variance, using the (dynamic) principal component analysis. The model is estimated in the space determined by a range (input
space) of principal componetns. The principal components are then used as observables for transformed model, without any
change of its economic structure. The method endogenously determines the structure of measurement errors. The approach can be
interpreted as implementing identical principal-component filter to both data and the model before estimation.
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1. Introduction

In paper I propose a method for estimating a stochastically
singular model using information on more time series than stochas-
tic shocks in the model. Instead of specifying pseudo-structural
shocks or ad-hoc measurement noise processes to link the model
to data, I map the model onto a subspace of maximum variance
of the data available, using a (dynamic) principal component
analysis – (D)PCA. This approach makes use of the dimension-
ality reduction and the fact that many data sets in economics
and finance are readily by large explained by only few static
and even less dynamic factors.

A well known (and a bit of extreme) example of a stochastic
singular model is a standard real business cycle (RBC) model
with only one source of stochastic disturbance – a technology
shock. Variability of all variables is driven by one shock. In fi-
nance, affine term structure models are stochastically singular,
having few factors driving wide set of maturities. This affects
seriously a maximum likelihood approach to estimation, as one
can use only one observable series for estimation, unless more
stochastic shocks are added into the system. The spectral den-
sity of model observables is singular, which is not always the
case in the data.

I argue bellow that allowing for ‘an error’ in the estimation
guided by principal components is more convenient than spec-
ifying pseudo-structural shocks or specifying measurement er-
rors.

IThe views expressed herein are those of the author and should not be at-
tributed to the International Monetary Fund, its Executive Board, or its man-
agement.
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In order to bring on board information from other time se-
ries, I suggest to calculate static or dynamic principal compo-
nents (factors) of observed data and associated principal angles
– directions of maximum variance in the data. After transform-
ing the observable equation of the model, the input to estimation
is the number of principal components coincident with the num-
ber of stochastic shocks of the model. The use of dynamic prin-
cipal component provides sharper dissection of lead-lag struc-
ture in data, yet commands use of spectral domain methods.

In most cases, the dimensionality reduction amounts to loss
of ‘information’ and it depends on the application at hand how
much information and at what frequencies is lost, yet a signal-
to-noise ratio of the data can increase. The key to understand
the method is to understand that it amounts to transforming (fil-
tering) the data and searching in the input space of the transform
for a proper parameterization.

I focus on time series analysis, where the source of redun-
dancy is not just contemporaneous correlation, but serial cross-
correlation and thus the idea of dynamic principal component
analysis (PCA across frequencies) arises quite naturaly. The ap-
proach is not identical, but related to theory of dynamic factor
models.

For instance, even in case of one structural shocks and only
first static principal component used the model is makes use
of information on all series and their relative variances. Such
combination of parameters is sought for that produces dynamics
which, when mapped onto a subspace of first principal compo-
nent, generates the result as much close to the data as possible.

First, I review the problem associated with stochastic sin-
gularity and most commonly used solutions. Then I propose a
method how to implement dimensionality-reduction parameter
and unobserved component estimation in time and frequency
domain and explain its properties. Computational experiment
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on parameter estimation and identification follows, before I con-
clude.

2. Stochastic Singularity and Likelihood-based Estimation

2.1. The Model

I assume a model can be cast in terms of linear, time invari-
ant state-space form

Yt = ZXt (1)
Xt = TXt−1 + Rεt, (2)

where Xt is a (nx × 1) vector of transition variables, Yt is a
(ny × 1) vector of measurement variables (observables) and εt

is (ne × 1) vector of stochastic shocks, assmed to follow Gaus-
sian distribution, i.e. ε ∼ N(0,Σε). With no loss of generality, I
assume the stochastic dimension of the model is ne. The form
of the model does not specify if εt are structural shocks or mea-
surement errors.

For further reference, we define a spectral density of Yt to
be

Syy(z) = (1/2π) × S(z)ΣεS(z)H S(z) = Z(I − Tz)−1R (3)

with z being a complex variable z = e−iλ, where λ ∈ [−π, π] is
the angular frequency.2

The process Y(t) := {Yt} can be rewritten in a form of
a moving average representations Yt = S(L)εt with S(z) =∑∞

i=0 S jz j.
Due to equivalence of time-domain and frequency-domain

(spectral) analysis of time series, the k-th order autocovariance
of Y(t) process is given by

Γk
y =

∫ π

−π

Syy(z)e−iλkdλ. (4)

2.2. Stochastic Singularity

Stochastic singularity is best understood by investigating
Syy(z), with diagonal square matrix Σε and (ny × ne) matrix
polynomial S(z). Stochastic singularity implies that the spectral
density matrix Syy(z) is rank-defficient at almost all frequencies.

For maximum likelihood estimation (MLE) or a Bayesian
likelihood-based estimation one requires that ne ≥ ny, i.e. one
cannot use more observables than is the stochastic dimension of
the model. When ne < ny, given any state Xt−1, it is impossible
to find εt that would be able to explain data, Yt.

Not only likelihood-based estimation is affected by stochas-
tic singularity, but any other estimator. In case methods of mo-
ments estimation one can employ more time series than stochas-
tic rank, but there is only a limited set of moments that are
linearly independent – the number of estimable parameters is
limited to number of moment conditions.

2Given a matrix A, I denote AH to be its conjugate-transpose.

Common solutions of the singularity problem. The issue is not
knew and it is well known. Sargent (1989) solved the problem
by augmenting the model with ‘measurement errors’, which can
be interpreted as noise in releases of the statistical office, for
instance. Altug (1989) estimates a real business cycle (RBC)
model driven by one shock by augmenting variables with uncor-
related measurement errors and explicitely acknowledges mod-
els implicit factor structure. In case of uncorrelated, zero-mean
measurement errors all cross-correlations between the data are
in principle unaffected, but their respective variances are not.

Ireland (2004) follows Sargent (1989) but makes the mea-
surement errors serially correlated, constructing thus a hybrid
model where ad-hoc dynamics could potentially explain a lot
of data dynamics and seriously affect estimation of ‘structural’
model’s parameters and render the underlying economic model
uninteresting.

Ingram, Kocherlakota, and Savin (1994) solve the stochas-
tic singularity by adding structural shocks with economic inter-
pretation. This approach may, however, lead to proliferation of
pseudo-structural shocks in order to make use of multiple time
series for the analysis. Further some shocks then seriously af-
fect the explanatory power of the model, e.g. various cost-push
shocks used in presence of high-frequency variation in the price
data are mostly used to explain the erratic high frequency move-
ment, but have often non-trivial medium-frequency response in
other real economic variables, that need to be counteracted with
other shocks to ‘fit’ the data. Fitting high frequencies with mis-
specified shocks can also lead to sever bias of inflation persis-
tence estimates. Essentially one can obtain a purely conditioned
state estimation problem.

In addition, evidence from principal component analysis of
data in many fields, including economics and finance suggest
that only relatively small number of principal components is
needed to explain most of the data variance. A chance of need-
ing large variety of shocks is thus small.

Measurment errors approach is chosen often also in finance,
see e.g. Piazessi (2010, Sect. 6.1.) for a discussion of stochastic
singularity in relation to affine term structure models and its
problematic nature.

2.2.1. Problem of using measurement errors as a solution
Are there any problems of estimating structural parameters

using measurement erors? Yes, there are – both in terms of
economics and estimation properties.

In dynamic macroeconomics models the decision between
structural shocks and measurement errors is absolutely crucial
from theory point of view. An improper choice of measurement
error can have vast consequences, e.g. adding a measurement
error to growth rate of a variable can lead to divergence in levels
of the observed data and the model concept of a variable. An-
other example is the measurement error on exports and imports,
creating a distorted view of trade balance, etc. In case of cross-
or auto-correlated measurement errors, see Ireland (2004) the
particular structure seriously affects parameter estimates.

In finance, namely in term structure models stochastic sin-
gularity and measurement error solution is a big issue, see e.g.
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Piazessi (2010), Hamilton and Wu (2011) or insightful com-
ment on measurement errors by Sims (2003).

Affine models of term structure convey the theory that there
is a small number of driving forces (factors) that drive the yield
curve. Augmenting selected or all maturities with a stationary
process for a measurement error is far from innocent – are these
serrially correlated, are these correlated across maturities, etc?

Sims (2003, pp. 502) comments: “Identification . . . requires
that we find a way to distinguish a priori the properties of the
measurement error process from that of the process for the un-
observed component that satisfies the theory. Because the the-
ory is precisely not about the measurement error, however, we
have little guidance as to what to assume about its properties.
. . . And continues: Is the “error” to be interpreted as reflecting
failure of no-arbitrage conditions, so that its existence implies
arbitrage opportunities?”

3. Dimensionality Reduction and Directions of Maximum
Variance

I assume that there are observed data {Yt}
T
t=1 of dimension

ny, corresponding by its structure to model variables in Yt. Ide-
ally, one would like to use all data for estimation, but only num-
ber smaller or equal to stochastic rank ne of the model can be
actually used in likelihood-based estimation.

I consider using dimensionality reduction to facilitate the
estimation and analysis of models with stochastic singularity,
i.e. transformation of the model (rotation) of the model into a
smaller dimensional space from which the original information
can be reconstructed with no or ‘minimal’ loss.

Specifically, I consider rotating the model in the direction of
maximum variance using non-parametric principal component
analysis. Given the redundancy in the model, the dimensionality-
reduction approach explores redundancy in the observed data.
Bellow, the static and dynamic principal components are used
with different implications and interpretation of the stochastic
singularity.

Principal component analysis is well established in multi-
variate analysis. In the data without temporal structure, the
contemporaneous cross-correlation is a source of redundancy.
In case of time series, the additional potential for redundancy
stems from temporal cross-correlation. For a (ny × 1) process
Y(t) I consider situations when either a matrix transformation
P or filter transformation P(L) of the form

Ft = PYt ξt = P(L)Yt with P(z) =

∞∑
i=−∞

Pizi (5)

is appropriate for finding components Ft or ξt, where sub-vectors
can be used for parameter estimation of the structural model.
Using a contemporaneous transformation Ft = PYt is easier to
implement.

Consider a well-known example, a simple process U(t) driven
by serially uncorrelated stationary process ν(t) ∼ N(0, σ2)

Ut =

[
νt

ανt−1

]
Γ0

U =

[
σ2 0
0 α2σ2

]
Γ+1

U =

[
0 0
ασ2 0

]
, (6)

with rank-defficient spectral density SU(λ)

SU(λ) =

[
1 αe−iλ

αeiλ α2

]
(7)

see Pourahmadi (1994) for further discussion of existence con-
ditions for reduced-rank transfrom P.3 This simple example
demonstrates clearly the difference between a static rank of the
process, determined by rank of its covariance matrix and dy-
namic stochastic rank of the proces as a rank of spectral density.

There is an established literature on relationship of dynamic
factor models and principal component analysis, see e.g. Forni,
Hallin, Lippi, and Reichlin (2000) and Bai and Ng (2007). In
terms of this literature in the example above (6)–(7) a process
ν(t) would be interpreted as dynamic factor and U(t) is irre-
ducible static factor in this specific case.

It is important to unerstand that I do not suggest to identify
a factor model or a dynamic factor model. I propose to use
as many principal component of the observed data as there are
stochastic shocks (or less) and essentially estimate the models
using the information in sample spectral density of the data.

4. Rotating the Model in a Maximum Variance Direction

This section demonstrates how to use dimensionality re-
duction for estimation of structural parameters of a state-space
model. First a simpler via static principal components is pre-
sented to make the idea clear and then a more powerful imple-
menation using dynamic principal components is demonstrated.

4.1. Subspace of ‘Static’ Principal Components
I am searching for ‘best’ conteporaneous (static) transfor-

mation P that will allow to capture as much information in the
data as possible with a set of orthogonal components. There
are multiple options and I will work with principle component
analysis (PCA).

Let the observed data vector be Yt, then it’s sample covari-
ance matrix ΣY and the data can be decomposed into k ≤ r
principal components where r is a static rank of the data, i.e.

ΣY = PΛP′ r = rank(ΣY), (8)

where P,Λ denote matrix of eigenvectors and diagonal matrix
of eigenvalues, respectively.

I define Pk to be a projection matrix on a subspace spanned
by k ≤ r first principal components of the data, hence

Fk
t = PkYt, Ŷt = P̄kFk

t = P̄kPkYt (9)

where Fk
t is a (k × 1) vector and Pk is a (k × ny) projection

matrix. Ŷt is a ‘recovered’ signal based on low-rank dimen-
sionality transform.

3Pourahmadi (1994) demonstrates that for a rank-degenerate stationary pro-
cess a contemporaneous transform P produces a lower-dimensional full-rank
time series only if the canonical correlation between past and future of the se-
ries is smaller than one, i.e. the spectral density rank is constant and the range
of the spectral density is constat across frequencies.
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It is feasible to view the proces as applying a PCA-filter.
The error of approximation et = Yt − Ŷt has a spectral den-
sity Se(λ) = LSY(λ)L′ where L = (I − P̄kPk). Understanding
this PCA-filter induced determination of ‘measurment errors’ is
crucial as it is importnat not to shuffle the assumption under the
rug.

For k = 1, for instance, the projection in a direction of the
first principal component, direction of maximum variance, is
just a weighted average of available observables and Fk

t is a
univariate time series.

Model Rotation in Directions of Maximum Variance. Having
extracted at most k = ne principal components from the data, I
condition the estimation of the model on k and Pk. The models
observables are projected onto subspace of k principal compo-
nents and the model is thus given by

Fk
S ,t = KXt (10)
Xt = TXt−1 + Rεt, (11)

where Fk
m,t ≡ PkYt, with dim(FS ,t) = k ≤ ne, and K = PkZ,

which is (k×nx). The observables for the conditional likelihood-
based estimation, conditional on k, are the k principal compo-
nents associated with the data Y.

Essentially, one would include first k principal components,
as these are determined by orthogonal directions in decreasing
order of data variation, but any combinations of principal com-
ponents is possible, if it provides sharper identification of the
model’s paramters.

The likelihood of the model can be thus expressed in terms
of observable non-singular components Fk

S , conditioned onΦ =

{k,P}

logL({Ft}
T
t=1|Φ) = −

T∑
t=1

1
2

[
k log 2π + log |Σt,t−1| + v′tΣ

−1
t,t−1vt

]
,

with vt being the prediction-error with Kalman filter implemen-
tation of the likelihood.

It is important to recall several key characteristics of PCA.
First, it is a non-parametric algorithm. Second, principal com-
ponents are mutually orthogonal. Third, principal components
are not defined uniquely, only the associated sub-space is uniquely
defined. Finally, PCA is very sensitive to units of measurement,
i.e. scaling.

The sensitivity to scaling is not likely to be an issue in the
current context as long as one takes care that the units of the
data and of the model agree, which is key in case of any es-
timation procedure. Obviously, some data transformation may
result in loss of identification on some parameters, e.g. detrend-
ing.

Finally, the method of ‘static’ principal components is only
one of the possible choices of arriving at a transform P. A
method closely related to it and to the next section is to fol-
low Forni, Hallin, Lippi, and Reichlin (2005) and use a projec-
tion matrix as a result of generalized principal component on
a factor space obtained by a dynamic principal components of
Brillinger (1981), that takes more into account serial correlation
of the series.

4.2. Space of Dynamic Principal Components

In the previous section I introduced computationally very
simple rotation of the model using a conteporaneous transform
Pk in a direction of static principal components obtained us-
ing eigenvalue decomposition of contemporaneous covariance
matrix.

Importantly, there is another space that the model can be
mapped to – space of dynamic principal components. This
method should in principle capture the dynamic correlations
among the components of {Yt}

T
t=t0 more efficiently, see Brillinger

(1981) and Forni et al. (2000).
Let’s denote (k × 1) vector FD,t be the vector of dynamic

principal components obtained using a projection matrix poly-
nomial Pk(z) if

Fk
D,t = Pk(L)Yt Ŷ = P̄k(L)Fk

D,t Pk(z) =

∞∑
i=−∞

Pk
i zi.

(12)
The major difference between (9) and (12) is that dynamic

principal component are not simply a weighted average of con-
temporaneous elements of Yt, but can involve their leads and
lags to account for dynamic relationships.

Rotating in Directions of Dynamic Principal Components. The
state-space model can be rotated in direction of k dynamic prin-
cipal component redefining as

Fk
D,t = Pk(L)ZXt (13)
Xt = TXt−1 + Rεt. (14)

In case of finite order matrix-valued polynomial Pk(z) it is very
easy to expand the state-space of the model and put the model
into standard form and carry on with the analysis using dynamic
factors {Fk

D,t}
T
t=1 implied by the data, conditioning on k.

In general Pk(z) may not be finite, hence approximation
is needed in time domain to calculate factors and the model
state-space form. A more convenient approach is to stick to
frequency domain.

Likelihood-based estimation of the transformed model. Follow-
ing Hannan (1970), inter alia, the Gaussian log-likelihood can
be approximated using Whittle-likelihood in frequency domain

logL ∝ −
1
2

T−1∑
j=0

log[det SF(λ j)] (15)

−π × tr
T−1∑
j=0

[SF(λ j)−1I
Ŷ

(λ j)],

evaluated at λ j = 2π j/T , where I
Ŷ

(λ) = Pk(λ)IYPk(λ)H is a pe-
riodogram of ofYt and SF(λ) = Pk(λ)Syy(λ)Pk(λ)H is a spectral
density of model observables after applying DPCA-filter Pk(L).
Note that except special degenerate cases (k×k) matrices SF(λ)
is full rank for almost all frequencies λ.

Dynamic principal component filter is obtained using a pro-
cedure proposed by Brillinger (1981, Ch. 9, Theorem 9.3.1).
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The problem is to determine (k × ny) linear filter Pk(L) and
(ny×k) filter P̄k(L) such as to minimize the approximation error

E||E|| = E||Yt − Ŷt || = E||Yt − P̄k(L)Pk(L)Yt || (16)

arising from (12). The solution relies on spectral analysis, com-
puting principal component of spectral density at individual fre-
quency bands.

Given an estimate of (ny ×ny) spectral density matrix SY(λ)
of Y(t) and its eigenvalue (spectral) decomposition

SY = V(λ)Λ(λ)V(λ)H (17)

frequency-domain filter Pk(λ) is given by first k (out of ny)
transposed conjugates of eigenvectors V(λ), i.e. first k rows of
V(λ)H . It follows that P̄k(λ) = Pk(λ)H from symmetry of spec-
tral density matrix. Coefficients of Pk(L) result from a inverse-
Fourirer transform of Pk(λ) as these are Fourier pairs.4

In case of dynamic principal components the analogy with
pre-filtering is much clearer – original data and the model are
both transformed using a DPCA-filter Pk(L). The ‘measure-
ment’ error Et has zero mean and spectral density given by

SE(λ) = [I − A(λ)]SY(λ)[I − A(λ)]H , (18)

where A(λ) = P̄k(λ)Pk(λ) is the ‘purifying filter’.
The estimation in frequency domain is very flexible and

fast. The only nuisance of the procedure suggested is the esti-
mation of unobserved variates {X(t), ε(t)} associated with stochas-
tically singular system (1) as convenient Kalman filter recur-
sions are not available, unless it is possible to truncate the filter
or when it converges ‘sufficiently fast’.

4.2.1. Estimating state variables
Unobserved variables implied by the singular model can be

estimated using the dynamic principal filter. Due to infinite-
dimensional transformation by Pk(z) the Kalman filter and smoother
algorithms are not available for economic analysis of the histor-
ical data.

The problem is well defined in terms of classical approach
of Wiener-Kolmogorov theory by employing spectral densities
of the unobservables SX(λ) and model-implied dynamic prin-
cipal components SF(λ), see e.g. lucid explanation in Whittle
(1983) for details. In case of doubly-infinite sample a relation-
ship

X̂t|T = Ω(L)Pk(L)Yt Ω(z) = SX,FD (z)SFD (z)−1, (19)

where SX,FD (λ) is cross-spectral density matrix and SFD (λ) is
spectral density matrix implied by the parameterized infinite-
dimensional state-space model (13).

The practical implementation of the filter I choose relies on
finite analogue to stochastic process as represented by circu-
lant matrices and their relationship to discrete Fourier transform
(DFT), see e.g. ? for a similar approach. All computations are
carried out at frequency domain and then transformed back to
time domain.

4Actual implementation of frequency-domain likelihood requires the filter
to be estimated using a sample-estimate of cross-spectrum. Cross-spectrum
estimation (smoothed periodogram) is sensitive to a selection of a a smoothing
kernel.

5. Controlled Experiments

The purpose of controlled experiments is to test if the method
provides sufficient identification and delivers more precise pa-
rameter estimates, than using limited number of time series.

I consider first a simplistic stochastic process with a factor
structure and simple version of the dynamic general equilibrium
model as a data generating process for testing the procedure.

5.1. Simple stochastic process
The most simple setup is a stochastic process defined as

xt = ρxxt−1 + εx (20)
ut = ρuut−1 + (1 − ρu)αx,uxt, (21)

where I assume that ρx = 0.9, ρu = 0.4 are known (conditioned
upon) and try to estimate only the parameter αx,u, taking a true
value of αx,u = 0.4. The setup is very simplistic. The parameter
is not identified when only xt is observed and can be estimated
using only ut. The results using a dynamic principal component
filter suggest that the estimate has smaller standard error than
estimates using ut only. Based on a sample of T = 200 and
N = 600 replications, using the Bartlett kernel with window
lag M = 20 (not optimized) the distribution of the estimate is
depicted at Fig. 1.

Figure 1: Distribution of estimates α̂x,u
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5.2. Simple dynamic economic model
The model is a one sector real business cycle model in a de-

centralized version, with representative households and firms.
Households derive the utility from habit adjusted consumption
Ct and suffer disutility from work Lt and rent their capital stock
Kt−1 and labor Lt to labor unions and firms at competive prices
∆k,t and Wt. Profits of trade unions and monopolistic final good
firms aggregates into total profits Π = ΠU

t + ΠP
t . In order

to accumulate the capital stock household buy investments Jt.
Household i maximizes their lifetime utility subject to their
budget constraint

Wt = E0

∞∑
t=0

βtU(Ct, Lt) (22)
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subject to

PtC(i)t + Pt J(i)t + B(i)t (23)
= ilt−1B(i)t−1 + Pt∆k,tKt−1 + WtLt + Π. (24)

Monopolistically competitive final good firms rent labor from
trade unions at wage rate Vt and capital stock from household,
facing quadratic adjustment costs of re-setting the price of the
good. The firm maximizes Et

∑∞
s=0 Ξt,sΠ

P
t+s

ΠP
t = PtYt − VtLU

t − Pt∆k,tkt − Pt
φ

2

(
πt( j)
πt−1

− 1
)2

, (25)

subject to demand for their goods based on usual CES aggre-
gate, with elasticity of substitution among individual varieties
σp. The productin function available to every firm is a standard
Cobb-Douglas one with labor-augmenting technology shock Zt

Yt = kα[ZtLt]1−α. (26)

The labor augmenting technology shock Zt is assumed to be
stationary AR(1) process defined by log Zt = ρ log Zt−1 + εt,
where εt ∼ N(0, σ2

z ).
Labor unions solve analogous problem as final good firms

with the instantaneous profits given by

Π(u)U
t = VtL(u)d

t −WtL(u)t − Vt
φV

2

π(u)V
t

πV
t−1

− 1
2

, (27)

where L(u)d
t ) denotes the variety sold by a particular trade union

branch and L(u)t is a demand of the branch of the hours worked
by households.

Aggregation implies that kt = Kt−1. The functional form
of momentary utility is chosen to imply separability of con-
sumption and leisure and would not be consistent with balanced
growth expansion of the economy,

Ut ≡
[Ct − hCt−1]1−σ

1 − σ
− χ

L1+η
t

1 + η
. (28)

I assume perfectly competitive financial sector which can
be source of financial shock due to intermediation and risk-
preference changes, giving rise to interet rate premium ζt on
top of the central bank policy rate that serves as marginal refi-
nancing cost for financial intermediary, hence

ilt = itζt (29)

The policy rule determines the central bank nominal interest
rate

4 log it = ρi4 log it−1 + (1 − ρi)[4 log īt + ρππ
4
t+3/π

∗
t+3], (30)

i.e. monetary policy targets year over year inlfation forecast
deviation from the target three periods ahead.

The parameter vector of interest consists of eight parame-
ters and is defined as θ = {α, β, σ, η, δ, ρ, σz}. The parameter χ is
always chosen to keep agents working constant portion of time
endowment in a steady state. True values for data generating
process are in Tab. 1.

The model is solved by log-linearization in the vicinity of a
deterministic steady state.

Table 1: True parameter values of the data generating process

Parameter α β σ η δ ρ σz

Value 0.6 0.99 2 1 0.025 0.95 0.01

5.2.1. Design of the Experiment
For the dynamic model I use the following set of six ob-

served variables: ct, jt, yt, it, πt and πvt with the model having up
to three stochastic innovations – uz

t , u
prem
t , ugt to stationary TFP,

risk premium and government spending.
I design a controlled experiments as follows. A data gen-

erating process (DGP) is simulated for T = 100 periods using
true parameter values, with N = 200 replications. For each
replication a projection matrix Pk is calculated, though the DGP
implies a distribution for elements of Pk.

Variables are measured in percentage deviation from a steady-
state and I consider observing the following: (i) output, (ii) con-
sumption, (iii) investment, (iv) hours worked, (v) real wages
and (vi) rental rate. Inclusion of the capital stock, a slow mov-
ing state variable, is analyzed separately. A PCA-conditioned
estimation is contrasted with estimation using only data for con-
sumption.

I check the identification of the parameters first. For each
case I calculate Fisher Information Matrix (FIM) for the model
evaluated at true parameter values and evaluate its condition
number and implied standard errors of classical estimate. The
lower the condition number, the smaller is the degree of iden-
tification of the model, given particular set of observables, see
Andrle (2010), inter alia.

Second, I construct a grid for the parameter space, which
includes a true parameter value.

6. Results

First, I discuss the results of simulation experiment and check
identification of the parameters. Second, I use macroeconomic
data from th United States to demonstrate (a well known) fact
that it has very parsimonious factor structure, indicating the
usefullness of the method.

6.1. Simulation Results
7. Conclusion

This paper suggest a method of estimating parameters in
stochastically singular models.

TBW
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8. Appendix

8.1. Dynamic principal components

The definition of dynamic principal components follows (Brillinger,
1981, pp. 344, Theorem 9.3.1)

8.2. DGE Model Formulation

The model is a simple dynamic general equilibrium model
of a closed economy with simplistic financial sector, whose
only role is to introduce risk premium into the lending rate. I
omitt capacity utilisation and other features used in business
cycle literature for the sake of simplicity.

ĉt =
h

1 + h
ĉt−1 +

1
1 + h

ĉt+1 −
1 − h
1 + h

1
σ

r̂t (31)

q̂t = κ[ ĵt − ĵt−1] − βκ[ ĵt+1 − ĵt] (32)
q̂t = −r̂t + (∆̄/r̄)∆̂k,t+1 + [(1 − δ)/r̄]q̂t+1 (33)
K̂t = (1 − δ)K̂t−1 + δ ĵt (34)
ŷt = (C/Y)ĉt + (J/Y) ĵt + (G/Y)ĝt (35)
ŷt = αk̂t + (1 − α)[Ẑt + L̂t] (36)
k̂t = K̂t−1 (37)
v̂t = r̂mc + ŷt − L̂t (38)

∆̂k,t = r̂mc + ŷt − k̂t (39)
λ̂t = −[σ/(1 − h)] × [ĉt − hĉt−1] (40)

−ηL̂t = λ̂t + ŵt (41)
rt = ilt − πt+1 (42)
îlt = ît + ζ̂t (43)

4ît = 4ρi ît−1 + (1 − ρi)[ρπ(π̂4
t+3)] (44)

π̂t =
β

1 + βξP
π̂t+1 +

ξP

1 + βξP
π̂t−1 + κPr̂mct (45)

π̂W
t =

β

1 + βξW
π̂W

t+1 +
ξW

1 + βξW
π̂W

t−1 + κW [ŵt − v̂t](46)

π̂W
t = π̂t + (ŵt − ŵt−1) (47)
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