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Introduction

This simple note attempts to provide a brief explanation how one can simulate

linear state-space models (DSGEs, VARs, . . . ) with exogenized/endogenized

variables both with anticipations and without anticipations. These methods are

used for producing forecasts using the ’G3’ model of the Czech National Bank

by Andrle, Kamenik, Vlcek and Hledik (2007).

Calculations are part of the IRIS Toolbox v. 2006-12-02 written by Jaromı́r

Beneš for the Czech National Bank. Since there exists no documentation of the

codes this short note is intended to facilitate communication of CNB’s staff.

Focus is on the intuition, please report errors.

State Space Form The state-space system used can be written as follows[
xN

t

αt

]
=

[
TF

TA

]
αt−1 +

[
RF

RA

]
εt (1)

xP
t = Uαt (2)

Yt = Zαt + Hεt, (3)
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where xN
t denotes (nf×1) vector of non-predetermined transition variables. The

(nb × 1) vector of transformed predetermined transition variables is denoted

by α. Untransformed transition variables are put into vector xP
t . Measure-

ment equation (3) contains (ny × 1) vector of measurement variables, linked

to transformed transition predetermined variables αt. For convenience, let

T = [TF ′
TA′

]′.

The discussion above naturally holds for other linear state-space forms, dif-

ferent our particular one.

1 Definition of the Problem

Simulating the state-space model given the initial conditions for α0 and trajec-

tory {ε}T
1 is straight-forward.

Bellow we demonstrate how it is possible to simulate the linear state-space

model conditioned on particular trajectory of selected variables while assuming

either unanticipated or fully anticipated shocks εt. Conditioning means that we

specify values of selected variables at selected periods and choose some economic

shocks at (possibly different) time periods to be calculated in a way to deliver

required trajectory of selected variables.

Effectively, there are certain exogenized variables and corresponding endog-

enized shocks (residuals). The only requirement for unique solution is that num-

ber of exogenized-variable-periods must be equal to endogenized-shock-periods.

Thus, it is not necessary that a particular value of exogenized variable at time

t must be delivered by endogenized shock at the same time!

Note, however, that the simulated path of all endogenous variables is depen-

dent on the structure of exogenization, namely on choice of endogenized shocks

and periods of endogenization.

If we setup a problem where one variable-period is for one shock-period,

the solution is exact. Note that we have another option – to specify exogenous

targets and calculate the evolution of several structural shocks that will deliver

the solution. Since if the problem is predetermined there are multiple solution,

following Sims and (?) we can choose the most likely set of shocks.
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Following the terminology of Waggoner and Zha (1999) and Leeper and

Zha (2003) we may distinguish hard constraints/conditions/tunes and soft con-

straints/conditions/tunes. This note is related to calculating hard tunes (fixes)

since we specify the solution exactly, not as a possible range. To save on space we

give explanation for calculating the basic hard fix with and without anticipated

shoks.

1.1 Simulating with Anticipations – Reminder

In case of perfect anticipation of economic shocks we have shown elsewhere1

how to expand the state-space system in order to allow for perfect-foresight sim-

ulation. For example, assume that last period of foreseen residual (i.e. different

from zero in our case) is at t + N . Then expanded state-space of the form

[
xN

t

αt

]
=

[
TF

TA

]
αt−1 + R


εt

εt+1

. . .

εt+N

 , (4)

where R is defined as

R =

[
RF XF RU XF JRU . . . XF JN−1RU

RA XARU XAJRU . . . XAJN−1RU

]
, (5)

where XF , XA and J,RU are defined in Andrle(2007). It is convenient to define

RN ≡

[
RF

RA

]
≡

[
RF

1 RF
2 . . . RF

N

RA
1 RA

2 . . . RA
N

]
, (6)

as partitioned matrix corresponding both to predetermined and nonpredeter-

mined transition variables and to particular time periods of forward anticipa-

tion. We add subindex N to R to denote the number of column-partitions of

the expanded matrix.
1Andrle, M.: Linear Approximation to Policy Function in Iris Toolbox, July 2007
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2 Simulating with Exogenized and Endogenized

Variables

Assume we have chosen values of particular variables at particular time peri-

ods. These can be achieved by selecting particular shocks in particular periods

appropriately.

The problem is then to calculate values for residuals (shocks) that satisfy

the constraint. The principle is intuitive. By simulating forward the model (or

expanded model) we can exactly trace the impact of particular shock εi,t on

all variables. Thus, we will calculate so called multiplier matrices or impact

matrices. These are in principle impulse-response matrices.

Knowing the multiplier matrices, we can proceed as follows. Given non-

endogenized shocks, we simulate the free solution of the model, implied by

initial conditions and exogenous shocks. Unless by chance, the solution will

not be equal to our desired path for exogenized variables. We need to find

such values of endogenized shocks that would eliminate the discrepancy. Due

to linearity of the model, this is just a linear system of equations problem.

A simple example may ehnance the intuition perhaps.

EXAMPLE: Let us have a simple model with perfectly anticipated shocks.

Let us assume that last nonzero shock is for t = 3, hence it is sufficient to

expand the state-space for three periods only. We can stack the solution of the

problem and calculate impact matrices.

x1 = Tx0 + [R1 R2 R3]


ε1

ε2

ε3

 (7)

x2 = Tx1 + [R1 R2]

[
ε2

ε3

]
(8)

x3 = Tx2 + R1ε3. (9)

For all simulated periods t = 1, 2, 3 we can stack the solution and find out

the multipliers of particular shocks.
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
x1

x2

x3

 =


R1 R2 R3

TR1 (TR2 + R1) (TR3 + R2)

T 2R1 T (TR2 + R1) T (TR3 + R2) + R1




ε1

ε2

ε3

 +


T

T 2

T 3

x0 (10)

where the left-hand side matrix is (3nx × 1), the vector of errors is (3ne × 1)

and the overall impact matrix is (3nx× 3ne) in our simple example.

For simplicity of notation, let us assume that nx = ne. Assume that we

require vector x3 (i.e. all variables in the third period) to be of some specific

value, say x3 = xfix
3 . Given values for all shocks in period 2 and 3 and initial

conditions expressed by x0, what is the value of ε1 for the model to meet the

restriction?

First, simulate the model with given ε2, ε3 and ε1 = 0. Denote the result

of free simulation as xfree. Define ξ = xfix
3 − xfree

3 as the discrepancy of the

required solution from the free solution. We need to find a value to be added

to our ε3 that would deliver required solution, i.e.

(xfree
3 − xfix

3 ) = T 2R1(εold
1 − εnew

1 ) (11)

which is just a simple linear problem with a solution

(
εold
1 − εnew

1

)
=

(
T 2R1

)−1
(xfree

3 − xfix
3 ) (12)

Using the new value for ε3 to simulate the model changes the solution of variables

that were not exogenized, but the condition for x3 will be met.

2.1 No Anticipation, Balanced-time Fixing

In case of no anticipation of structural shocks and when we are fixing the same

number of variables as we are endogenizing at each particular time period , the

situation is much easier than in other cases.

There are two main reasons why the situation is simple. First, since shocks

are unanticipated, they matter for the dynamics only in the period they come

and in periods onward. It is thus very easy to trace the impact of the shock on
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all variables in linear case.

Second, since at each period in which there is some fixed variable, we also

have some endogenized variable. We can thus proceed step-by-step and set the

endogenous residual εt in such a way that it will deliver the required value of

fixed variable – xN
t , αt or Yt.

Let us define the instant multiplier or instant impact matrix for the vector

xt = [xN ′
α′] and for measurment variables Yt as

MX =

[
MX1

MX2

]
=

[
RF

RA

]
MY = Z(MX2) + H. (13)

Then we can proceed as follows. Given α0 (the initial condition for state vari-

ables) and trajectory of exogenous residuals {εt}T
0 . At each time, we calculate

the free solution and contrast value of exogenized variables to desired values.

Conditioning on instant impact matrices MX and MY we find out value of

endogenized partition of εt such that constraints on exogenous variables are

met.

New values of endogenized shocks will propagate into next periods by means

of predetermined transition variable α. But since in the next period we have

both exogenized and corresponding amount of endogenized variables (shocks),

we repeat the problem.

Going back to the simple example above, we can see that in case of an-

ticipated shocks and/or unbalanced-time fixing –which are both present in the

example– we would not be able to use this simple step-by-step solution method.

In case of anticipations – the value of shock at t + N affects solution already at

t, hence the whole problem must be stacked into one large problem.

2.2 Unbalanced-time Fixing and/or Anticipated Shocks

When anticipated shocks are assumed and/or mixed with unbalanced-time fixing

of variables, we proceed basically as in the example above. We form large stacked

linear problem where we map all shocks to all variables.
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The basic form of the problem is as follows
xt

xt+1

. . .

xt+K

 =


MX1,ε1 . . . MXεt+N

MX1,ε1 . . . MXεt+N

. . . . . . . . .

MX1,ε1 . . . MXεt+N




ε1

ε2

. . .

εN

 , (14)

where the index K goes towards the last exogenous variable in the time span

and N goes towards the last endogenized residual in the model.

The MX multiplier matrix is of the (nxK × neN) dimension. Note that

nx = nf + nb, since xt = [xN ′
α′]′. Note that the first ’partition-row’ of impact

matrix of dimension (nx×neN) for the first period t = 1 is identical to expanded

matrix RN expanded N periods forward. When the expansion of the state-space

for anticipated shocks is carried out, is equal to greater value from last observed

residual (LR) and last endogenized variable N .

Then, we recursively update the ’partition rows’ of the multiplier matrix

MX. The first ’partition row’ (with initial conditions) gives arise to x1, which

is then recursively propagated to x2 by T as cen be seen for instance in the

simple example above. The vector of shocks from t = 1 period is thus carried

only through past effect through T . However shocks from t = 2, . . . N are still

in the instantanous impact matrix for time t = 2 which is RN−1. The subindex

N − 1 means that the original matrix RN which is (nx× neN) is now reduced

to (nx × ne(N − 1)) by cuting the leftmost part of the expanded matrix. In

Matlab notation we can write that RR2 = RR1(:,ne*(N-1)). In this way the

R matrix is reduced period-by-period. At the last period where no foreseeable

shocks are byond the period the RN−N−1 = R.

In principle each nest ’partition-row’ is the previous row multiplied by matrix

T (the transition/update move) and for ’partition columns’ corresponding to

current and onwards periods the instatnous matrix Rt is added. The pattern is

best viewed in the simple example above where always only to columns on and

above diagonal the current impact matrix is added.

In the Matlab code of the IRIS toolbox the simplified version may be run as

follows: First, we initialize the impact matrix R for the case of anticipations or

no anticipations. In case of anticipations the columns are expanded to treat all
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shocks forward up to last endogenous shock.

if anticipate == true

RR = R(:, 1:ne*lastendog);

MX(1:nx, :) = RR;

else

RR = R(:, 1:ne);

MX(1:nx, 1:ne) = RR;

end

Then we run the recusion and at each particular time we fill the matrix MX

and the matrix MY by the updating scheme, i.e. multiply by T and if column

above the ’partitioned diagonal’, add the current impact matrix.

We also need to form multiplier matrix for transition variables in Y . Calcula-

tion of MY matrix is straight-forward, since we have that for each ’partition-row’

(i.e. period)

MYt = Z(MX2)t + H. (15)

At the end, we get two impact-multiplier matrices MX and MY mapping

shocks into transtion and measurement variables through a simple system of

linear equations.
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