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Motivation
I How many shocks do we need to explain an economy’s

dynamics?

I Many dynamic economic models feature only few truly
structural shocks, yet have implications for a handful of
macro variables

I Macroeconomic data feature a great amount of regularity

I Adding back newly defined ‘regression error’ to DSGE
models



Stochastic Singularity – Definition
Assume a model is cast in terms of linear, time invariant
state-space form

Yt = ZXt (1)
Xt = TXt−1 + Rεt , (2)

The model is ‘stochastically singular’ if a spectral density of
observed variables Syy (λ) is rank-defficient at almost all
frequencies.

Implications:
I Number of shocks is less than or equal to number of observables

(sufficient condition)
I A combination of elements in Y is perfectly correlated.



Stochastic Singularity – Problem

I Macroeconomic and financial data are never perfectly
correlated

I The model cannot be exact data-generating process for
real data

I It precludes use of likelihood-based methods and Kalman
filter

I Bayesian-likelihood methods are of no help here, of course
;)



Stochastic Singularity – Common Solutions (I)

A. Methods of moments (Ruge-Murcia, 2004)
I What moment restriction are suitable?
I How to estimate structural shocks and unobserved variables?

B. Restricting the set of observed variables
I Loss of valuable information. Which variables to retain?

C. Introducing more ‘structural shocks’
I Are many shocks used in the literature really structural?



Stochastic Singularity – Common Solutions (II)

D. Adding uncorrelated measurement error (Altug 1989,
Sargent 1989)

I Yt = ZXt + Kνt
I Cross-correlations driven only by the model
I Restrictive specification, misspecification issues
I What variables are noisy?

E. Adding dynamic measurement error process (Ireland,2004)
I Yt = ZXt + D(L)νt
I Increases the complexity and number of parameters of the model
I Ad-hoc dynamics may overrule the structural model



Appeal of Stochastic Singularity

Models:
I Theory underpins only few truly structural driving forces
I Sharper economic identification of structural shocks

Data:
I Macroeconomic data feature robust regularities and

co-movement
I At business cycle frequency, real economic variables are

driven by few factors (Andrle and Brůha, 2012)
I Real and nominal cyclical comovement is very strong

(Andrle, 2012)



Real Comovements – Principal Components Analysis
United States. . . Source: Andrle and Brůha (2012)
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Real Comovements – Principal Components Analysis
Japan. . . Source: Andrle and Brůha (2012)
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Real Comovements – Principal Components Analysis
Spain. . . Source: Andrle and Brůha (2012)
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Real and Nominal Comovements
Source: Andrle (2012)
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New Estimation Method for Singular Models

Our models and estimation method should exploit data
regularities!

Underlying intuitive approach:
1. Find the principal components and principal subspace of the data

(subspace of ‘maximum covariance’)

2. Use at most ne dimensions, where ne is number of shocks

3. Rotate the model into this subspace

4. Estimate transformed model using likelihood-based methods

5. Estimate (filter) unobserved variables and structural shocks

The estimator penalizes models incompatible with robust
feature of the data.



Principal Components – Static vs. Dynamic
Stochastic singularity relates to dynamic rank of the
model/data.

Consider a well-known example, a simple process U(t) driven
by serially uncorrelated stationary process ν(t) ∼ N(0, σ2)

Ut =

[
νt

ανt−1

]
, Γ0

U =

[
σ2 0
0 α2σ2

]
, Γ+1

U =

[
0 0
ασ2 0

]
, (3)

with rank-defficient spectral density SU(λ)

SU(λ) =

[
1 αe−iλ

αeiλ α2

]
. (4)

Static rank (PCA) is 2.
Dynamic rank (DPCA) is 1 – only one driving force.



PC-MLE – Classic Principal Components (i)
Let ΣY be a covariance matrix of observed data Y.

Using principal component analysis find P and Λ

ΣY = PΛP′ r = rank(ΣY), (5)

where P,Λ denote matrix of eigenvectors and diagonal matrix
of eigenvalues, respectively.

Define Pk to be a projection matrix on a subspace spanned by
k ≤ ne ≤ r first principal components of the data, hence

Fk
t = PkYt , Ŷt = P̄kFk

t = P̄kPkYt (6)

where Fk
t is a (k × 1) vector and Pk is a (k × ny ) projection

matrix. Ŷt is a ‘recovered’ signal based on low-rank
dimensionality transform.



PC-MLE – Classic Principal Components (ii)
The approximation error determines the measurement error
process:

et = Yt − Ŷt (7)

with a spectral density Se(λ) = LSY(λ)L′ where L = (I− P̄kPk ).

Transform the model – project it into factor space:

Fk
S,t = KXt (8)
Xt = TXt−1 + Rεt , (9)

where Fk
m,t ≡ PkYt , with dim(FS,t ) = k ≤ ne, and K = PkZ,

which is (k × nx ).

Conditional on Pk , form standard log-likelihood criterion and
use conventional Kalman filter.



DPC-MLE – Dynamic Principal Components (i)
Dynamic Principal Components – David Brillinger (1981, Ch. 9)

The problem is to determine (k × ny ) linear filter Pk (L) and
(ny × k) filter P̄k (L) such as to minimize

E||E|| = E||Yt − Ŷt || = E||Yt − P̄k (L)Pk (L)Yt || (10)

Boils down to PCA on spectral density at each frequency.

Data pre-filtering using DPCA filter determines the
measurement error process:

SE(λ) = [I − A(λ)]SY(λ)[I − A(λ)]H , (11)

where A(λ) = P̄k (λ)Pk (λ) is a ‘purifying filter’.



DPC-MLE – Dynamic Principal Components (ii)
Denote FD,t be the vector of dynamic principal components
using DPCA filter Pk (z) if

Fk
D,t = Pk (L)Yt Ŷ = P̄k (L)Fk

D,t Pk (z) =
∞∑

i=−∞
Pk

i z i . (12)

Complication: Pk (z) is possibly infinite!

The transformation of the model and estimation is carried out in
frequency-domain, where the problem is well defined.



DPC-MLE – Dynamic Principal Components (iii)
Rotate (transform) the model into DPC space:

Fk
D,t = Pk (L)ZXt (13)
Xt = TXt−1 + Rεt . (14)

Formulate Whittle likelihood

logL ∝ −1
2

T−1∑
j=0

log[det SF (λj)] (15)

−π × tr
T−1∑
j=0

[SF (λj)
−1IF̂D

(λj)],

Very efficient & fast way of evaluating likelihood and
identification checks.



DPC-MLE – Dynamic Principal Components (iv)
Structural shocks cannot be estimated using the Kalman filter.

Use a Wiener-Kolmogorov filter implied by the transformed
model:

X̂t |T = W(L)Pk (L)Yt W(z) = SX ,FD (z)SFD (z)−1, (16)

where SX ,FD (λ) is a cross-spectral density matrix and SFD (λ) is a spectral
density matrix implied by the parameterized infinite-dimensional state-space
model



DPC-MLE – Dynamic Principal Components (v)
Some important questions & considerations:

I Principal component estimates are not scale invariant.

I Should one compute componets on data or of the model?

I ‘Good’ estimates of sample spectral density are not easy
to get



Simple Example (I.)
Simple model:

xt = ρx xt−1 + εx (17)

ut = ρuut−1 + (1− ρu)αx,uxt + εu, (18)

Parameterized: ρx = 0.90, ρu = 0.4, αx,u = 0.4, σx = σu = 0.1

Observed ut , T=200, N=600 replications.
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RBC Example – One Component/Factor (i)
Simple, standard RBC model:

I Single structural shock (technology)
I Measurement errors added. . .

I One component/factor computed using cons, inv & wages
I Can we recover the unobserved components well?



RBC Example – One Component/Factor (ii)
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RBC Example – One Component/Factor (iii)
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RBC Example – One Component/Factor (iv)
Histogram of estimates for ρ
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RBC Example – One Component/Factor (v)
Identification/sensitivity for ρ

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−285

−280

−275

−270

−265

−260

−255

−250



Issues & Caveats

I The best thing is to incorporate most of data
considerations directly to the model

I There are many reasons not to base estimation on
likelihood, or unconditional moments only in general. . .

I Likelihood assumes your model is a correct one, pure
likelihood methods are not very robust



Conclusions

I Stochastic singularity can be a useful thing in a model

I Thinking about the data, number of shocks and ‘how much’
one wants to ‘fit’ is useful

I Dimensionality reduction methods provide one way how to
extract important features in the data and comovements



Thank you for your patience. . .


