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Why?

Motivation:
1. Need for system evaluation or estimation of FSGM/GIMF

2. Explicit account of expectation dynamics

3. Challenge of joining estimation with complex prior on model’s properties
...

4. Not tried before



Estimation by the Analogy Principle. . .
“. . . the analogy principle of estimation . . . proposes that
population parameters are estimated by sample statistics which
have the same property in the sample as the parameters do in
the population”
(Goldberger, 1968)

“I have found that the analogy principle disciplines econometric
research by focusing attention on estimation problems rather
than on methods. . . . One can define an analog estimator only
after one has stated the estimation problem of interest.”
(Manski, 1988)



BSMM/SP Estimation Method

Bayesian Simulated Method of Moments with System Priors

1. Bayesian
Includes priors and boundaries on parameters to regularize the problem.

2. Simulated
Uses the law of motion of the model to evaluate moments, and treat
small-sample bias.

3. Method of Moments
Minimizes distance between sample and model-implied statistics.

4. System Priors
Introduces sophisticated economic priors on moment system properties,
inducing complex interdependent joint prior distribution of parameters.



BSMM/SP: Requirements

Requirements:
1. A fully simmulable, possibly nonlinear, model is required.

2. Having some data is handy. . . (mixed frequency is fine)

3. Time. . .

Note, even the Google PageRank algorithm runs just once a month. . .



BSMM/SP: Why NOT Maximum Likelihood?

Maximum Likelihood Estimation (MLE) or Bayesian MLE is a
popular and frequently used option for DSGE model estimation.

MLE is a problematic option for large, nonlinear models:

1. MLE is very non-robust to misspecification compared to GMM/SMM

2. MLE suffers from stochastic-singularity problems

3. Given the size, not feasible in non-linear form

4. In linearized model, the likelihood evaluation is very ill-conditioned and
costly (large state-space)

5. Implicitly optimizes one-step ahead projection performance

6. More demanding data requirements

7. One can use ‘priors’ also with other estimation methods



BSMM/SP: Criterion function
The criterion function has three components

p(θ|X ,Z , γ) ∝ QN(θ|X )× πS(θ|Z )× πM(θ|γ) (1)

1. QN(θ|X ): exponential χ-square loss function

2. πS(θ|Z , γ): system priors

3. πM (θ|γ): marginal independent priors

Normalizing constant is ignored, as it is irrelevant for both
optimization of the posterior mode and posterior sampling.



BSMM/SP: Marginal prior – πM(θ|γ)

The marginal-independent prior is specified by πM(θ|γ):
I Includes prior distribution and boundaries for parameters in θ ∈ Θ

I The priors are specified by a hyper-parameter vector γ
I Priors are specified as independent, marginal distributions

Evaluating πM(θ|γ) is trivial and fast. . .



BSMM/SP: System priors – πS(θ|Z )

The system priors are specified by πS(θ|Z ):
I Places a priori constraints on system properties of the model
I The priors are specified by a hyper-parameter vector Z
I Priors induce complex global interdependencies among parameters

System prior examples (see Andrle and Beneš, 2012):
I value of the sacrifice ratio
I duration of inflation deviation from target after a demand shock
I cumulative response of output to a productivity shock
I . . .

Evaluating πS|Z amounts to solving/simulating the model.



BSMM/SP: Criterion function (a)
The χ-square criterion function is:

log QN(θ|X ) = (µ(X )− µ(θ))′ WR,T (µ(X )− µ(θ)) (2)
= g(X , θ)′WR,T g(X , θ). (3)

Here X is N × T matrix of sample data, µ(X ) is the conditional or
unconditional moments in the data, µ(θ) is the model implied moments
vector, L× 1.

WR,T is a positive definite weighting matrix, chosen to maximize efficiency of
the estimator.



BSMM/SP: Criterion function (b)
Weighting matrix is determined to get efficient criterion.

I continuous-updating of the WR,T |θ

I exact finite-sample distribution of g(θi ) for T periods

Under the null-hypothesis, given θi , we simulate R times and
select T periods to calculate the moments, obtaining their finite
sample distribution.

WR,T = E|R
[
(g(θi)− ḡ(θi)(g(θi)− ḡ(θi)

′] (4)

Thus, the moments with large short-sample variance are
penalized during the estimation.

Yet, this is not in line with ‘minimal econometric interpretation’
of Geweke.



BSMM/SP: Parameter Estimates

What can be in the moment vector µ(.)?

Absolutely anything you can compute using the model. . .
(i) Unconditional moments

(means, variances, correlations, higher order. . . )

(ii) Conditional moments (kernel estimation)
data is the limiting factor and dimensionality



BSMM/SP: Parameter Estimates

Obtaining posterior estimates of θ:
I search for posterior mode p̂(θ|X ,Z , γ) using optimization
I use Adaptive Random-Walk Metropolis algorithm to reveal the full

posterior distribution

TBW:



Issues
Important choices to make:
1. Type of simulation

2. Treatment of parameters affecting steady-state

3. Number of shocks employed for the estimation

4. Specification of robust system priors

Progress have already been made on all issues!



Issues: Simulation Method
Speed × Accuracy × Nonlinearities Trade-offs:

(i) point-linearization (fast)

(ii) path-linearization (default, reasonably fast)

(iii) full nonlinear stochastic simulation (slow, convergence problems)

Path-linearization and Stochastic simulations
(i) Simulate the full nonlinear model for a shock of a size ε0/U

(ii) Rescale the response of the model back by U

(iii) Sample R × τT matrix of shocks

(iv) Permute the response into a stochastic simulation for K selected
variables

Fast for small number of shocks and high U.



Issues: Parameters affecting steady-state
Three elementary strategies used:

I use of “greedy” homotopies
I two-step estimation with a pre-fetch discretization
I pre-fetch discretization with homotopy

Default approach being tested is greedy homotopies.



Issues: Number of Shocks
Parsimony is a virtue, limits are computational:

1. Stochastic singularity is a good thing! (Andrle, 2012)

2. Demand shocks dominate business cycle frequencies (Andrle, Bruha
2013)

3. Robust estimation with persistent data (Gorodnichenko et al, 2011)

4. Small sample size due to annual frequency, identification problems

5. Trend missspecification propgates the whole spectrum (Cogley, 2001,
Andrle, 2008)

6. Selection of moments/shocks obviously matters for identification
(Canova and Sala, 2010)

7. Proper modeling of trends is missing from GIMF, GEM and
FSGM/G20MOD



Monte Carlo Test using GIMF (a)
Tests of the method initially using GIMF:

I Integrated in GIMF-Dynare infrastructure
I Uses GIMF2 (US, RW) model
I Path-linearization simulation
I Homotopy for steady-state solution

Parameter estimated using the data simulated from the model,
so true values of coefficients were known:

Experiments carried out:
i) Cumulative local-identification paths

ii) Identification analysis using the Fischer Information Matrix

iii) Estimation of the posterior mode



Monte Carlo Test using GIMF (b-i)
Local conditional identification (no priors)
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Monte Carlo Test using GIMF (b-ii)
Local conditional identification (with priors)
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Monte Carlo Test using GIMF (c)
Results:

Name γUS δI,US φP I,US φP C,US φI,US δπ,US

True 2.000 0.330 40.00 40.00 1.000 0.750
Estimate 2.004 0.330 39.42 40.13 1.006 0.752
Std. error 0.034 0.096 0.968 0.486 0.022 0.017

Timing:
1. Non-optimized evaluation of the loss w/o sstate fun.: 6.5 sec

(Optimized evaluation: 3.2 sec)

2. Hessian using central differences: 1347.38 sec
3. Posterior mode: 6278.72 sec, 28 iterations (with steady-state param)
4. Posterior mode: 1347.38 sec, 16 iterations (no steady-state param)
5.

Moments:
1. 17 moment statistics (unconditional)
2. vairables used: GDP, consumption, investment, core inflation, interest

rates



Monte Carlo Test using GIMF (c)
Identification using the Fisher Information Matrix:
TBW


